



**US Army Corps  
of Engineers**  
Wilmington District®

# **Wilmington Harbor 403 EIS**

**Wilmington, North Carolina**

## **Appendix A General Engineering**

06/12/2025

**Draft**

Prepared by U.S. Army Corps of Engineers  
Wilmington District  
69 Darlington Avenue  
Wilmington, North Carolina 28403

---

This page is intentionally left blank.

---

|                                                                           |      |
|---------------------------------------------------------------------------|------|
| Section A.1. Introduction .....                                           | A-1  |
| A.1.1. Background .....                                                   | A-1  |
| A.1.2. Project Area and Overview.....                                     | A-1  |
| A.1.3. Purpose .....                                                      | A-1  |
| A.1.4. Datums .....                                                       | A-1  |
| Section A.2. Design and Construction .....                                | A-1  |
| A.2.1. Background .....                                                   | A-1  |
| A.2.2. Channel Footprint Improvements .....                               | A-1  |
| A.2.3. Channel Dredge Depth Improvements (Action Alternative 1).....      | A-2  |
| A.2.4. Channel Dredge Depth Improvements (Action Alternative 2).....      | A-4  |
| A.2.5. Construction Methodology.....                                      | A-6  |
| Section A.3. Operations and Maintenance .....                             | A-6  |
| A.3.1. Historic Quantities .....                                          | A-6  |
| Section A.4. Quantity Estimating .....                                    | A-7  |
| A.4.1. Program.....                                                       | A-7  |
| A.4.2. Bathymetry .....                                                   | A-8  |
| A.4.3. Top of Rock .....                                                  | A-8  |
| A.4.4. Quality Control/Quality Assurance.....                             | A-9  |
| Section A.5. AA1 and AA2 Dredge Quantities .....                          | A-10 |
| Section A.6. Future Maintenance .....                                     | A-12 |
| Section A.7. Pre-construction Engineering and Design Considerations ..... | A-15 |
| A.7.1. Dredged Material Management .....                                  | A-15 |
| A.7.2. Dredging Methodology .....                                         | A-16 |
| A.7.3. Navigation and Infrastructure Impacts.....                         | A-16 |

## **List of Figures**

|                                                    |     |
|----------------------------------------------------|-----|
| Figure 1: Federal Navigation System Overview ..... | A-1 |
| Figure 2: AA1 Typical Section .....                | A-4 |
| Figure 3: AA2 Typical Section .....                | A-6 |
| Figure 4: Hard Rock Boundary .....                 | A-9 |

## List of Tables

|                                                                    |      |
|--------------------------------------------------------------------|------|
| <i>Table A.1: Existing Channel Dimensions</i> .....                | A-1  |
| <i>Table A.2: Existing vs. Proposed Channel Footprints</i> .....   | A-2  |
| <i>Table A.3: AA1 Depth Improvements</i> .....                     | A-3  |
| <i>Table A.4: AA2 Depth Improvements</i> .....                     | A-4  |
| <i>Table A.5: Federal Channel Dredging History</i> .....           | A-7  |
| <i>Table A.6: Action Alternative 1 Dredge Quantities</i> .....     | A-10 |
| <i>Table A.7: Action Alternative 2 Dredge Quantities</i> .....     | A-11 |
| <i>Table A.8: Estimated Shoaling Rates in CY/YR for NAA</i> .....  | A-13 |
| <i>Table A.9 Estimated Shoaling Rates in CY/YR for AA1</i> .....   | A-14 |
| <i>Table A.10: Estimated Shoaling Rates in CY/YR for AA2</i> ..... | A-15 |

---

## **List of Attachments**

Attachment 1: Existing vs. New Footprints

Attachment 2: Channel Morphology Study

## APPENDIX A – GENERAL ENGINEERING

### Section A.1. Introduction

#### A.1.1. Background

The U.S. Army Corps of Engineers (USACE), Wilmington District (SAW) initiated the Wilmington Harbor Section 403 Letter Report and Environmental Impact Statement Project (WH S403 Project) for the purpose of evaluating the technical, policy, and legal issues identified with the North Carolina State Ports Authority's (NCSPA) 2020 Water Resources Development Act (WRDA) 203 Feasibility Study. For the effort of evaluation, various engineering tasks were completed to support the WH S403 Project.

#### A.1.2. Project Area and Overview

The Federal Navigation System of the Wilmington Harbor is located along the Cape Fear River in New Hanover County in southeastern North Carolina. Federal Navigation System channels along the Cape Fear River connect the Port of Wilmington to the Atlantic Ocean. The overall project consists of 38 miles of channel from the entrance of the Cape Fear River at the Outer Ocean Bar to the Port of Wilmington, located at Anchorage Basin. Engineering evaluations were performed for channel deepening and channel widening, as shown in Figure 1.

#### A.1.3. Purpose

The purpose of the Appendix A - General Engineering is to present the general engineering analyses and design to support the WH S403 Project.

#### A.1.4. Datums

The following datums were used for the WH S403 Project, unless otherwise noted.

Horizontal: NAD83 North Carolina State Plane

Vertical: Mean Lower Low Water (MLLW)

### Section A.2. Design and Construction

#### A.2.1. Background

The Federal Navigation System of Wilmington Harbor is divided into 23 separate reaches located within four maintenance segments: Upper Harbor, Mid-River, Inner Ocean Bar, and Outer Ocean Bar. The Upper Harbor Maintenance Segment includes the reaches from Anchorage Basin to Lower Brunswick. The Mid-River Maintenance Segment includes reaches from Upper Big Island to Lower Swash. The Inner Ocean Bar Maintenance Segment includes reaches from Battery Island to Baldhead Shoal Reach 2. The Outer Ocean Bar Maintenance Segment includes the reach Baldhead Shoal Reach 3. An additional reach named Baldhead Shoal Reach 4 has been proposed in the action alternatives and would be part of the Outer Ocean Bar. There are additional reaches north of the Port of Wilmington that are not considered for deepening and are therefore not discussed in this appendix. Please see Figure 1: Federal Navigation System Overview.

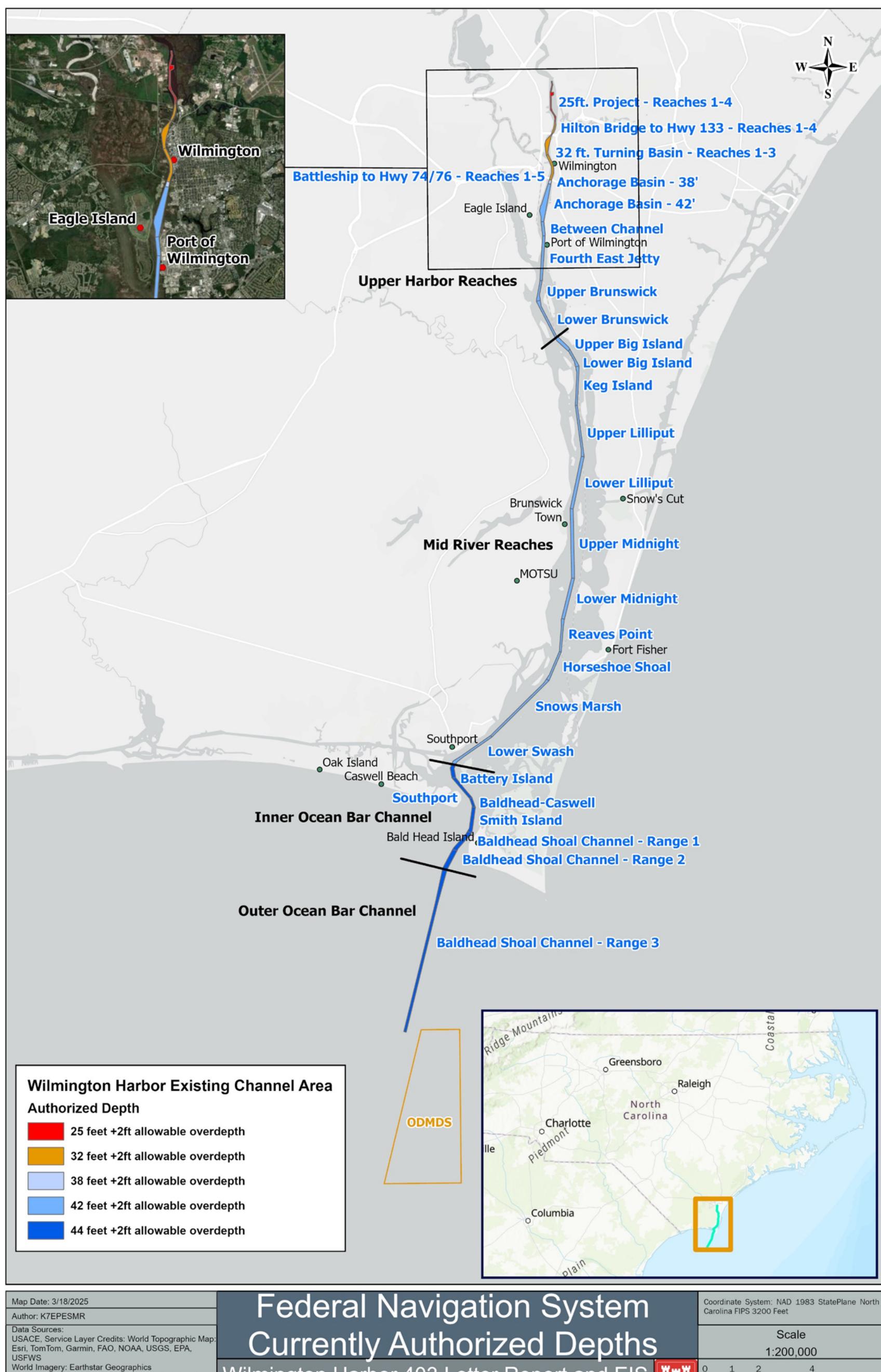



Figure 1: Federal Navigation System Overview

The reaches vary in authorized depth from 38 feet to 44 feet with an allowable overdepth of 2 feet. The reaches vary in width from 400 feet to 900 feet, with the exception of the Anchorage Basin which has a channel width of 1,200 feet to allow for the turning of vessels. Table A.1 summarizes the existing channel dimensions.

*Table A.1: Existing Channel Dimensions*

| Reach                         | Channel Width (ft) | Maintained Channel Depth (ft) | Authorized Channel Depth + Overdepth (ft) |
|-------------------------------|--------------------|-------------------------------|-------------------------------------------|
| <b>Anchorage Basin</b>        | 547-1200           | 38/42 <sup>1</sup>            | 44                                        |
| <b>Between Channel</b>        | 500-550            | 42                            | 44                                        |
| <b>Fourth East Jetty</b>      | 450-500            | 42                            | 44                                        |
| <b>Upper Brunswick</b>        | 400-775            | 42                            | 44                                        |
| <b>Lower Brunswick</b>        | 400-775            | 42                            | 44                                        |
| <b>Upper Big Island</b>       | 540-700            | 42                            | 44                                        |
| <b>Lower Big Island</b>       | 400-700            | 42                            | 44                                        |
| <b>Keg Island</b>             | 400-700            | 42                            | 44                                        |
| <b>Upper Lilliput</b>         | 400-610            | 42                            | 44                                        |
| <b>Lower Lilliput</b>         | 600                | 42                            | 44                                        |
| <b>Upper Midnight</b>         | 600                | 42                            | 44                                        |
| <b>Lower Midnight</b>         | 600                | 42                            | 44                                        |
| <b>Reaves Point</b>           | 400-600            | 42                            | 44                                        |
| <b>Horseshoe Shoal</b>        | 400-610            | 42                            | 44                                        |
| <b>Snows Marsh</b>            | 400-610            | 42                            | 44                                        |
| <b>Lower Swash</b>            | 400-740            | 42                            | 44                                        |
| <b>Battery Island</b>         | 740                | 44                            | 46                                        |
| <b>Southport</b>              | 500-600            | 44                            | 46                                        |
| <b>Baldhead-Caswell</b>       | 500-650            | 44                            | 46                                        |
| <b>Smith Island</b>           | 650-895            | 44                            | 46                                        |
| <b>Baldhead Shoal Reach 1</b> | 750                | 44                            | 46                                        |
| <b>Baldhead Shoal Reach 2</b> | 900                | 44                            | 46                                        |
| <b>Baldhead Shoal Reach 3</b> | 500-900            | 44                            | 46                                        |

1. Anchorage Basin has an authorized depth of 38 feet between stations 0+00-40+00 and an authorized depth of 42 feet from station 40+00 to 84+05.

## A.2.2. Channel Footprint Improvements

For this project, SAW analyzed three alternatives: a future without project (No Action Alternative, NAA), deepening the harbor to a minimum depth of 47 feet (Action Alternative 1, AA1), and deepening the harbor to a minimum depth of 46 feet (Action Alternative 2, AA2). Both AA1 and AA2 also involved widening most of the reaches. Currently, Wilmington Harbor has a minimum width of 400 feet and a maximum width of 1,200 feet. The proposed widening would increase the minimum width to 500 feet and the maximum width to 1,509 feet. Summaries of the footprint improvements can be found in Table A.2: Existing vs. Proposed Channel Widths. For more detailed information on the channel improvements, refer to **Attachment 1: Existing vs. Proposed Channel Footprints**.

Table A.2: Existing vs. Proposed Channel Footprints

| Reach                  | Existing Channel Width (ft) | Proposed Channel Width (ft) |
|------------------------|-----------------------------|-----------------------------|
| Anchorage Basin        | 547-1200                    | 547-1509                    |
| Between Channel        | 500-550                     | 575-625                     |
| Fourth East Jetty      | 450-500                     | 550-575                     |
| Upper Brunswick        | 400-775                     | 500-925                     |
| Lower Brunswick        | 400-775                     | 500-925                     |
| Upper Big Island       | 540-700                     | 560-700                     |
| Lower Big Island       | 400-700                     | 500-795                     |
| Keg Island             | 400-700                     | 500-795                     |
| Upper Lilliput         | 400-610                     | 500-685                     |
| Lower Lilliput         | 600                         | 600-660                     |
| Upper Midnight         | 600                         | 600                         |
| Lower Midnight         | 600                         | 600                         |
| Reaves Point           | 400-600                     | 500-600                     |
| Horseshoe Shoal        | 400-610                     | 500-710                     |
| Snows Marsh            | 400-610                     | 500-710                     |
| Lower Swash            | 400-740                     | 500-1230                    |
| Battery Island         | 740                         | 1150-1300                   |
| Southport              | 500-600                     | 800-1150                    |
| Baldhead-Caswell       | 500-650                     | 800                         |
| Smith Island           | 650-895                     | 900                         |
| Baldhead Shoal Reach 1 | 750                         | 750-900                     |
| Baldhead Shoal Reach 2 | 900                         | 900                         |
| Baldhead Shoal Reach 3 | 500-900                     | 600-900                     |
| Baldhead Shoal Reach 4 | N/A <sup>1</sup>            | 600                         |

1. Baldhead Shoal Reach 4 does not currently exist and the reach would be added as part of AA1 or AA2.

### A.2.3. Channel Dredge Depth Improvements (Action Alternative 1)

AA1 involves deepening the Federal Navigation System to a minimum depth of 47 feet. Specifically, the reaches would be deepened from an authorized depth of 42 feet to 47 feet between Anchorage Basin and Lower Swash. Battery Island to Baldhead Shoal Reach 4 would be deepened to an authorized depth of 44 feet to 49 feet. To ensure safe navigation, all reaches within the total channel length would include an additional 2 feet of overdepth, and areas with rock above the overdepth elevation would receive an additional 1 foot of overdepth for rock clearing. A summary of the proposed depths for AA1 can be found in Table A.3: AA1 Depth Improvements. A typical cross-section of the channel improvements for this alternative is illustrated in Figure 2: AA1 Typical Section.

Table A.3: AA1 Depth Improvements

| Reach                  | Existing Authorized Depth (ft) | Proposed Authorized Depth (ft) | Initial Allowable Overdepth (ft) | Rock Clearing Overdepth (ft) | Total Depth (ft) |
|------------------------|--------------------------------|--------------------------------|----------------------------------|------------------------------|------------------|
| Anchorage Basin        | 42                             | 47                             | +2                               | +1                           | 50               |
| Between Channel        | 42                             | 47                             | +2                               | +1                           | 50               |
| Fourth East Jetty      | 42                             | 47                             | +2                               | +1                           | 50               |
| Upper Brunswick        | 42                             | 47                             | +2                               | +1                           | 50               |
| Lower Brunswick        | 42                             | 47                             | +2                               | +1                           | 50               |
| Upper Big Island       | 42                             | 47                             | +2                               | +1                           | 50               |
| Lower Big Island       | 42                             | 47                             | +2                               | +1                           | 50               |
| Keg Island             | 42                             | 47                             | +2                               | +1                           | 50               |
| Upper Lilliput         | 42                             | 47                             | +2                               | +1                           | 50               |
| Lower Lilliput         | 42                             | 47                             | +2                               | +1                           | 50               |
| Upper Midnight         | 42                             | 47                             | +2                               | +0                           | 49               |
| Lower Midnight         | 42                             | 47                             | +2                               | +0                           | 49               |
| Reaves Point           | 42                             | 47                             | +2                               | +0                           | 49               |
| Horseshoe Shoal        | 42                             | 47                             | +2                               | +0                           | 49               |
| Snows Marsh            | 42                             | 47                             | +2                               | +1                           | 50               |
| Lower Swash            | 42                             | 47                             | +2                               | +1                           | 50               |
| Battery Island         | 44                             | 49                             | +2                               | +1                           | 52               |
| Southport              | 44                             | 49                             | +2                               | +1                           | 52               |
| Baldhead-Caswell       | 44                             | 49                             | +2                               | +0                           | 51               |
| Smith Island           | 44                             | 49                             | +2                               | +0                           | 51               |
| Baldhead Shoal Reach 1 | 44                             | 49                             | +2                               | +0                           | 51               |
| Baldhead Shoal Reach 2 | 44                             | 49                             | +2                               | +0                           | 51               |
| Baldhead Shoal Reach 3 | 44                             | 49                             | +2                               | +1                           | 52               |
| Baldhead Shoal Reach 4 | N/A <sup>1</sup>               | 49                             | +2                               | +0                           | 51               |

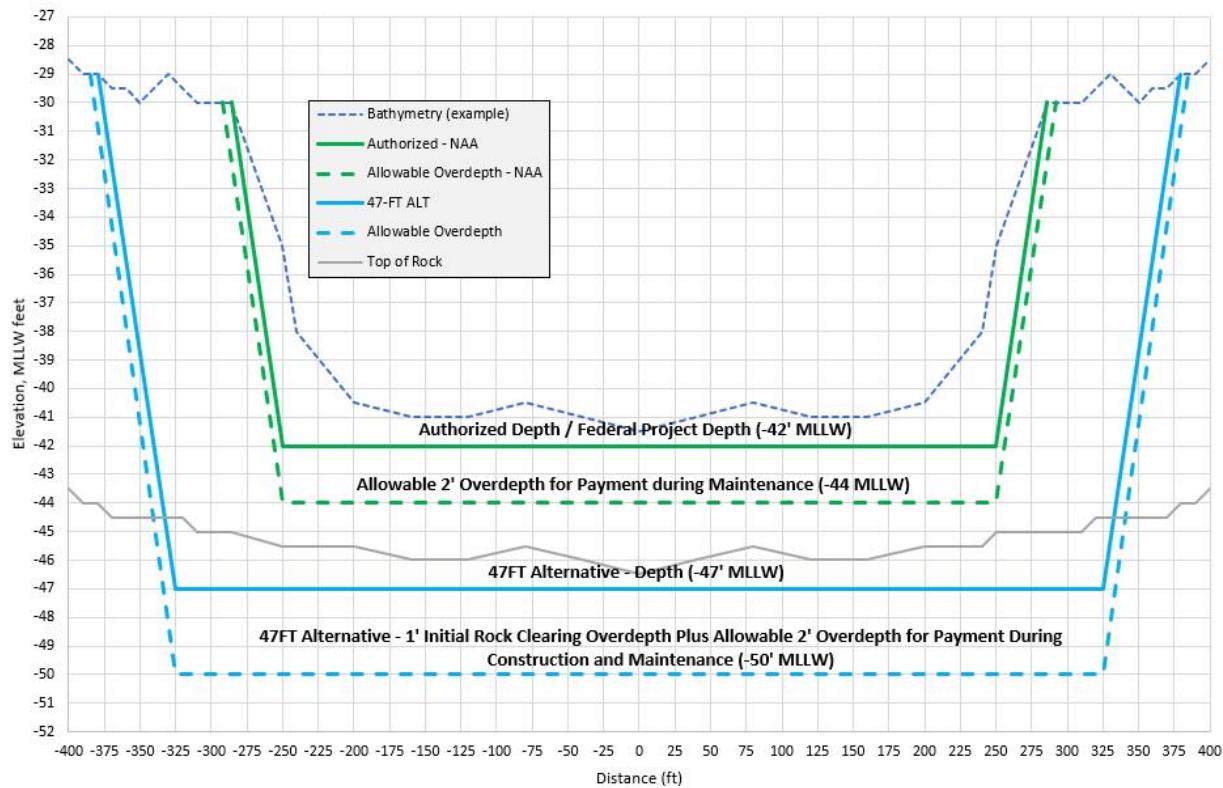



Figure 2: AA1 Typical Section

#### A.2.4. Channel Dredge Depth Improvements (Action Alternative 2)

AA2 involves deepening the harbor to a minimum depth of 46 feet. Specifically, the channel would be deepened from an authorized depth of 42 feet to 46 feet between Anchorage Basin and Lower Swash. Battery Island to Baldhead Shoal Reach 4 would be deepened from an authorized depth of 44 feet to 48 feet. Similar to AA1, all reaches within the total channel length would include an additional 2 feet of overdepth, and areas with rock above the overdepth elevation would receive an additional 1 foot of overdepth for rock clearing. A summary of the proposed depths for the AA2 can be found in Table A.4: AA2 Depth Improvements. A typical cross-section of the channel improvements for this alternative is illustrated in Figure 3: AA2 Typical Section.

Table A.4: AA2 Depth Improvements

| Reach             | Existing Authorized Depth (ft) | Proposed Authorized Depth (ft) | Initial Allowable Overdepth (ft) | Rock Clearing Overdepth (ft) | Total Depth(ft) |
|-------------------|--------------------------------|--------------------------------|----------------------------------|------------------------------|-----------------|
| Anchorage Basin   | 42                             | 46                             | +2                               | +1                           | 50              |
| Between Channel   | 42                             | 46                             | +2                               | +1                           | 50              |
| Fourth East Jetty | 42                             | 46                             | +2                               | +1                           | 50              |
| Upper Brunswick   | 42                             | 46                             | +2                               | +1                           | 50              |
| Lower Brunswick   | 42                             | 46                             | +2                               | +1                           | 49              |
| Upper Big Island  | 42                             | 46                             | +2                               | +1                           | 49              |
| Lower Big Island  | 42                             | 46                             | +2                               | +1                           | 49              |
| Keg Island        | 42                             | 46                             | +2                               | +1                           | 49              |
| Upper Lilliput    | 42                             | 46                             | +2                               | +1                           | 49              |

| Reach                         | Existing Authorized Depth (ft) | Proposed Authorized Depth (ft) | Initial Allowable Overdepth (ft) | Rock Clearing Overdepth (ft) | Total Depth(ft) |
|-------------------------------|--------------------------------|--------------------------------|----------------------------------|------------------------------|-----------------|
| <b>Lower Lilliput</b>         | 42                             | 46                             | +2                               | +1                           | 49              |
| <b>Upper Midnight</b>         | 42                             | 46                             | +2                               | +0                           | 48              |
| <b>Lower Midnight</b>         | 42                             | 46                             | +2                               | +0                           | 48              |
| <b>Reaves Point</b>           | 42                             | 46                             | +2                               | +0                           | 48              |
| <b>Horseshoe Shoal</b>        | 42                             | 46                             | +2                               | +0                           | 48              |
| <b>Snows Marsh</b>            | 42                             | 46                             | +2                               | +1                           | 49              |
| <b>Lower Swash</b>            | 42                             | 46                             | +2                               | +1                           | 49              |
| <b>Battery Island</b>         | 44                             | 48                             | +2                               | +1                           | 51              |
| <b>Southport</b>              | 44                             | 48                             | +2                               | +1                           | 51              |
| <b>Baldhead-Caswell</b>       | 44                             | 48                             | +2                               | +0                           | 50              |
| <b>Smith Island</b>           | 44                             | 48                             | +2                               | +0                           | 50              |
| <b>Baldhead Shoal Reach 1</b> | 44                             | 48                             | +2                               | +0                           | 50              |
| <b>Baldhead Shoal Reach 2</b> | 44                             | 48                             | +2                               | +0                           | 50              |
| <b>Baldhead Shoal Reach 3</b> | 44                             | 48                             | +2                               | +1                           | 51              |
| <b>Baldhead Shoal Reach 4</b> | N/A                            | 48                             | +2                               | +0                           | 50              |

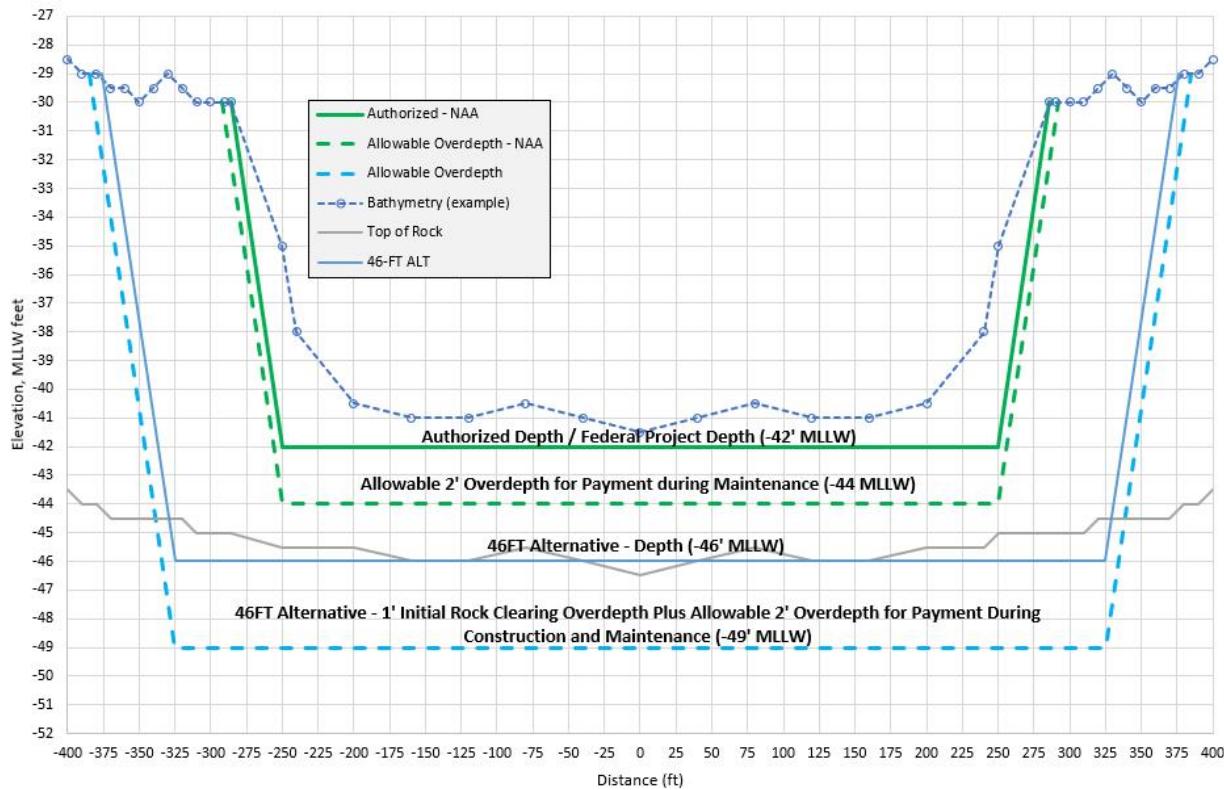



Figure 3: AA2 Typical Section

### A.2.5. Construction Methodology

To achieve the desired channel improvements, it is assumed that mechanical, hydraulic pipeline and hopper dredges will be utilized. Mechanical dredges will be used to excavate and remove material from the harbor. Excavated material will then be transported to the Ocean Dredged Material Disposal Site (ODMDS) using scows for proper placement. Alternatively, hopper dredges may also be used to excavate and remove material for transport to and placement in the ODMDS. In contrast, a hydraulic pipeline dredge will be used to remove material that is suitable for beneficial use. Beneficial use could include beach renourishment or habitat restoration and will be pumped through a pipeline to designated sites where it can be repurposed. Between the Lower Brunswick and Keg Island reaches, it is expected that hard rock will be encountered. Controlled rock blasting will be used to break up the rock, allowing for its safe and efficient removal. For further detail on rock blasting, refer to *Appendix C, Geology and Geotechnical Engineering Appendix*. For further details on beneficial use sites and placement, please refer to *Appendix D, Beneficial Use Appendix*.

## Section A.3. Operations and Maintenance

### A.3.1. Historic Quantities

SAW currently conducts Operations and Maintenance (O&M) dredging on the Federal Navigation System each year. Some reaches such as Anchorage Basin and Outer Ocean Bar are dredged every year while most of the other reaches are dredged less frequently. Annually, approximately 2.7 million cubic yards of material are dredged from the channel. Refer to Table A.5: Federal Channel Dredging History for further details.

Table A-5: Federal Channel Dredging History

| Reach                         | Frequency of Dredging | Yearly Average Dredging Quantity (CY) <sup>1</sup> | Placement Site                   | Dredge Type <sup>2</sup> |
|-------------------------------|-----------------------|----------------------------------------------------|----------------------------------|--------------------------|
| <b>Anchorage Basin</b>        | Every Year            | 1,117,000                                          | ODMDS/Eagle Island               | 2/3                      |
| <b>Between Channel</b>        | Every Year            | 36,000                                             | ODMDS/Eagle Island               | 2/3                      |
| <b>Fourth East Jetty</b>      | When Needed           | 11,000                                             | ODMDS/Eagle Island               | 2/3                      |
| <b>Upper Brunswick</b>        | Every 2 to 4 Years    | 45,000                                             | ODMDS/Eagle Island               | 2/3                      |
| <b>Lower Brunswick</b>        | Every 2 to 6 Years    | 64,000                                             | ODMDS/Eagle Island               | 2/3                      |
| <b>Upper Big Island</b>       | Every 2 to 6 Years    | 21,000                                             | ODMDS                            | 1/3                      |
| <b>Lower Big Island</b>       | Every 2 to 6 Years    | 10,000                                             | ODMDS                            | 1/3                      |
| <b>Keg Island</b>             | Every 2 to 6 Years    | 19,000                                             | ODMDS                            | 1/3                      |
| <b>Upper Lilliput</b>         | Every 3 to 6 Years    | 24,000                                             | ODMDS                            | 1/3                      |
| <b>Lower Lilliput</b>         | Every 3 to 6 Years    | 57,000                                             | ODMDS                            | 1/3                      |
| <b>Upper Midnight</b>         | Every 2 to 6 Years    | 40,000                                             | ODMDS                            | 1/3                      |
| <b>Lower Midnight</b>         | Every 2 to 6 Years    | 8,000                                              | ODMDS                            | 1/3                      |
| <b>Reaves Point</b>           | Every 3 to 6 Years    | 5,000                                              | ODMDS                            | 1/3                      |
| <b>Horseshoe Shoal</b>        | Every 3 to 6 Years    | 30,000                                             | Bird Island/ODMDS                | 1/2/3                    |
| <b>Snows Marsh</b>            | Every 3 to 6 Years    | 17,000                                             | Bird Island/ODMDS                | 1/2/3                    |
| <b>Lower Swash</b>            | When Needed           | 0                                                  | ODMDS                            | 1/3                      |
| <b>Battery Island</b>         | Every 3 to 4 Years    | 27,000                                             | ODMDS                            | 1/2                      |
| <b>Southport</b>              | Every 3 to 4 Years    | 6,000                                              | ODMDS                            | 1/2                      |
| <b>Baldhead-Caswell</b>       | When Needed           | 5,000                                              | ODMDS                            | 1/2                      |
| <b>Smith Island</b>           | Every 3 to 4 Years    | 205,000                                            | Baldhead Island/Oak Island/ODMDS | 1/2                      |
| <b>Baldhead Shoal Reach 1</b> | Every 5 to 6 Years    | 138,000                                            | Baldhead Island/Oak Island/ODMDS | 1/2                      |
| <b>Baldhead Shoal Reach 2</b> | Every 5 to 6 Years    | 127,000                                            | Baldhead Island/Oak Island/ODMDS | 1/2                      |
| <b>Baldhead Shoal Reach 3</b> | Every Year            | 714,000                                            | ODMDS                            | 1                        |

1. Data is based on maintenance dredging in the Federal Channel between 2005 – 2022.

2. Dredging Method: 1 – Hopper Dredge, 2 – Pipeline Dredge, 3 – Mechanical (Clamshell)

## Section A.4. Quantity Estimating

For cost estimating purposes, SAW analyzed the amount of material to be removed from the harbor for the AA1 and AA2. Dredged Material was differentiated between O&M material, New Work material, Hard Rock, and Soft Rock. O&M Material is material that is located within the existing dredge box templates. New Work material is non-rock material that is located outside of the existing dredge box, inside of the proposed dredge box of either AA1 or AA2, and above the Top of Rock surface. Soft Rock is material located within the proposed AA1 and AA2 dredge boxes, below the top of rock surface, and can be removed via standard dredging methods. Hard Rock is material located within the proposed AA1 and AA2 dredge boxes, below the top of rock surface, and requires confined blasting before it is able to be removed using standard dredging methods.

### A.4.1. Program

AutoCAD Civil 3D 2021 was the program used to compute material quantities. The program utilizes a surface analysis tool to calculate the cut and fill of two overlapping surfaces. Using this tool, SAW could

create a proposed surface using the designed dredge box dimensions and compare it against the existing survey surface. The surface analysis tool would compute the quantity of cut, which is the material to be dredged from the channel.

#### **A.4.2. Bathymetry**

The SAW Navigation Team was able to survey each of the reaches using the district survey vessels "Swart" and "Sanderson", using Real Time Kinematic Global Positioning System (RTK GPS) Horizontal Positioning Equipment and 200 kilohertz (kHz) sounding equipment between April and December of 2023. The survey data was imported into AutoCAD Civil 3D 2021 and converted into a digital surface to be compared against the dredge box surfaces. All bathymetry surveys were conducted at least 7 months post dredging. SAW considers that although bathymetry may vary annually due to shoaling and O&M dredging events, the collected data offers an accurate estimate of expected quantities for construction of AA1 and AA2.

#### **A.4.3. Top of Rock**

The SAW Geotechnical Team was able to test boring samples at several points along each reach to determine the elevation of the top of the rock. These points were imported into AutoCAD Civil 3D 2021 and a surface was created by triangulating the points. Utilizing the surface analysis tool, the quantity of rock required for removal within each channel alternative reach was determined. The assessment distinguished how much of the cut for each channel alternative was rock that needed to be removed. The rock surface consists of hard rock and soft rock which were also differentiated in quantities. Hard rock generally refers to rock that needs to be blasted before dredging, while soft rock generally refers to rock that can be dredged without the need for blasting. Refer to *Appendix C- Geology and Geotechnical Engineering Appendix* for further information. A majority of the Federal Navigation System consists of soft rock with the exception of all of the Upper Big Island and the Lower Big Island reaches, the lower 1,730 feet of reach of Lower Brunswick, and the upper 2,980 feet of reach of Keg Island. Please refer to Figure 4: Hard Rock Boundary, the white line shows the area of hard rock in this area.

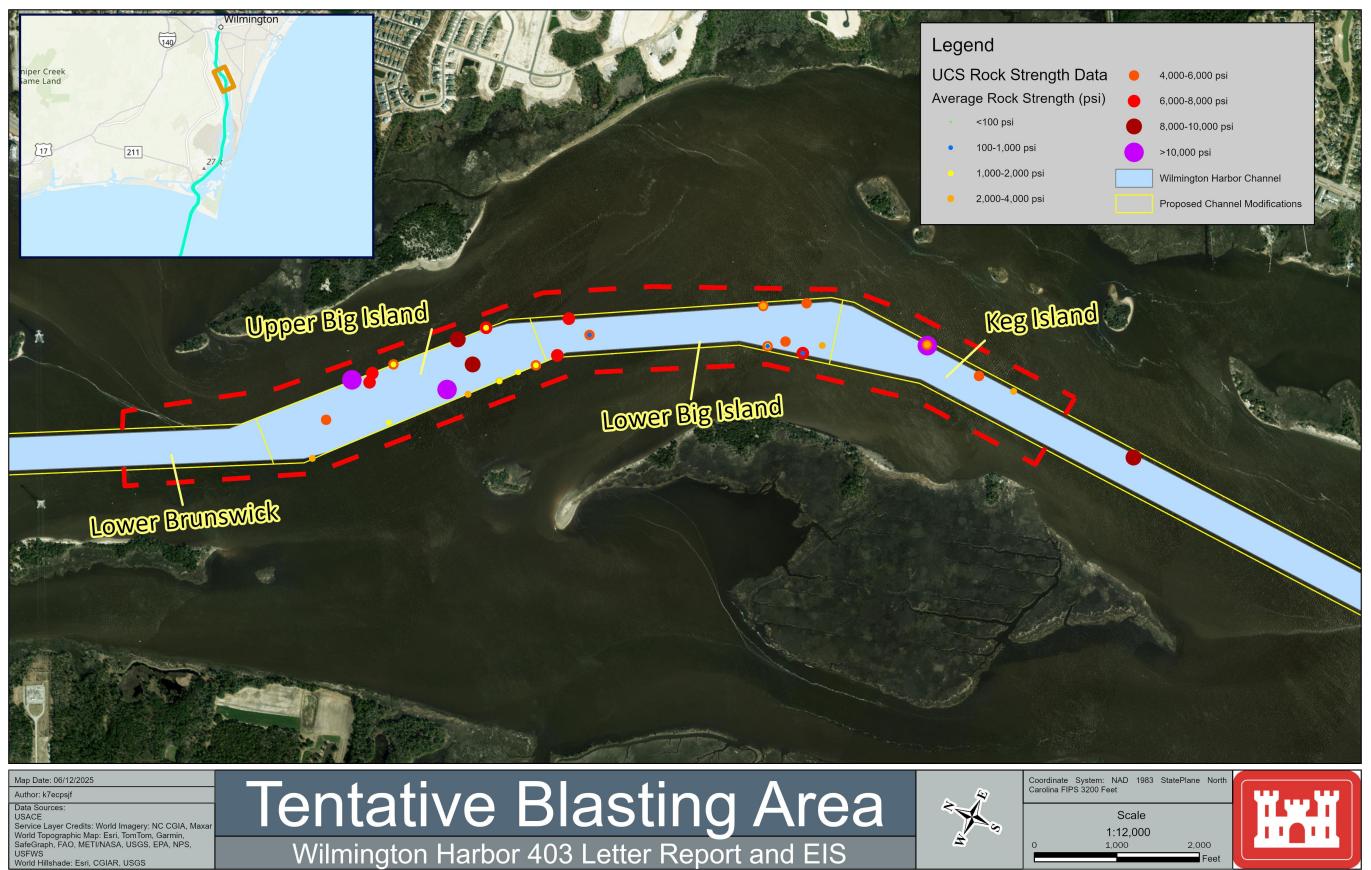



Figure 4: Hard Rock Boundary

#### A.4.4. Quality Control/Quality Assurance

Once SAW's Engineering Team calculated the various quantities for each reach of Wilmington Harbor, SAW's Navigation Team reviewed the results using their own quantity calculation program, Hypack. Quantities were deemed accurate if the values produced by the SAW Engineering Team had no more than a 3% difference compared to the values produced by the SAW Navigation Team. All quantities were within the acceptable range and therefore were considered accurate.

## Section A.5. AA1 and AA2 Dredge Quantities

Table A.6 summarizes the dredge quantities for each reach of the Wilmington Harbor under Alternative AA1. Table A.7 summarizes the dredge quantities for each reach of the Wilmington Harbor under Alternative AA2.

Table A.6: Action Alternative 1 Dredge Quantities

| Reach                                  | Total Quantity (CY) | Maintenance O&M (CY) | New Work (Non-Rock) (CY) | Soft Rock (CY) | Hard Rock (CY) |
|----------------------------------------|---------------------|----------------------|--------------------------|----------------|----------------|
| <b>Anchorage Basin - 8+00 to 84+85</b> | 2,948,659           | 1,341,184            | 655,649                  | 951,826        | 0              |
| <b>Between Channel</b>                 | 446,318             | 16,075               | 218,109                  | 212,134        | 0              |
| <b>Fourth East Jetty</b>               | 1,165,438           | 80,565               | 580,000                  | 504,873        | 0              |
| <b>Upper Brunswick</b>                 | 931,418             | 132,392              | 649,048                  | 149,979        | 0              |
| <b>Lower Brunswick</b>                 | 1,556,968           | 139,857              | 1,027,851                | 222,654        | 166,605        |
| <b>Upper Big Island</b>                | 817,838             | 173,172              | 217,380                  | 0              | 427,286        |
| <b>Lower Big Island</b>                | 897,799             | 121,128              | 386,478                  | 0              | 390,193        |
| <b>Keg Island</b>                      | 1,430,867           | 115,010              | 973,994                  | 183,344        | 158,518        |
| <b>Upper Lilliput</b>                  | 1,747,351           | 164,681              | 1,266,666                | 316,004        | 0              |
| <b>Lower Lilliput</b>                  | 1,940,116           | 402,063              | 1,468,120                | 69,934         | 0              |
| <b>Upper Midnight</b>                  | 1,710,712           | 264,794              | 1,445,918                | 0              | 0              |
| <b>Lower Midnight</b>                  | 986,874             | 112,565              | 874,309                  | 0              | 0              |
| <b>Reaves Point</b>                    | 953,751             | 163,697              | 790,053                  | 0              | 0              |
| <b>Horseshoe Shoal</b>                 | 783,187             | 88,667               | 694,521                  | 0              | 0              |
| <b>Snows Marsh</b>                     | 1,959,499           | 99,651               | 1,721,621                | 138,227        | 0              |
| <b>Lower Swash</b>                     | 2,106,332           | 57,799               | 1,803,408                | 245,125        | 0              |
| <b>Battery Island</b>                  | 1,322,486           | 173,184              | 928,245                  | 221,058        | 0              |
| <b>Southport</b>                       | 552,585             | 27,878               | 522,229                  | 2,478          | 0              |
| <b>Baldhead-Caswell</b>                | 172,654             | 51,064               | 121,590                  | 0              | 0              |
| <b>Smith Island Channel</b>            | 1,073,055           | 425,159              | 647,896                  | 0              | 0              |
| <b>Baldhead Shoal Reach 1</b>          | 888,939             | 321,027              | 567,911                  | 0              | 0              |
| <b>Baldhead Shoal Reach 2</b>          | 1,096,998           | 276,738              | 819,370                  | 890            | 0              |
| <b>Baldhead Shoal Reach 3</b>          | 5,444,024           | 294,680              | 4,818,665                | 330,679        | 0              |
| <b>Baldhead Shoal Reach 4</b>          | 1,634,666           | N/A                  | 1,634,666                | 0              | 0              |

Table A.7: Action Alternative 2 Dredge Quantities

| Reach Name                             | Total Quantity (CY) | Maintenance O&M (CY) | New Work (Non-Rock) (CY) | Soft Rock (CY) | Hard Rock (CY) |
|----------------------------------------|---------------------|----------------------|--------------------------|----------------|----------------|
| <b>Anchorage Basin - 8+00 to 84+85</b> | 2,667,980           | 1,341,184            | 632,886                  | 693,910        | 0              |
| <b>Between Channel</b>                 | 377,250             | 16,075               | 214,218                  | 146,957        | 0              |
| <b>Fourth East Jetty</b>               | 964,195             | 80,565               | 559,255                  | 324,374        | 0              |
| <b>Upper Brunswick</b>                 | 823,173             | 132,392              | 597,786                  | 92,995         | 0              |
| <b>Lower Brunswick</b>                 | 1,351,865           | 139,857              | 951,732                  | 128,741        | 131,535        |
| <b>Upper Big Island</b>                | 703,250             | 173,172              | 195,753                  | 0              | 334,325        |
| <b>Lower Big Island</b>                | 803,560             | 121,128              | 371,208                  | 0              | 311,224        |
| <b>Keg Island</b>                      | 1,242,082           | 115,010              | 892,417                  | 129,081        | 105,575        |
| <b>Upper Lilliput</b>                  | 1,513,754           | 164,681              | 1,123,238                | 225,834        | 0              |
| <b>Lower Lilliput</b>                  | 1,659,028           | 402,063              | 1,228,784                | 28,180         | 0              |
| <b>Upper Midnight</b>                  | 1,370,348           | 264,794              | 1,105,554                | 0              | 0              |
| <b>Lower Midnight</b>                  | 778,791             | 112,565              | 666,226                  | 0              | 0              |
| <b>Reaves Point</b>                    | 809,785             | 163,697              | 646,088                  | 0              | 0              |
| <b>Horseshoe Shoal</b>                 | 651,339             | 88,667               | 562,673                  | 0              | 0              |
| <b>Snows Marsh</b>                     | 1,624,592           | 99,651               | 1,448,868                | 76,074         | 0              |
| <b>Lower Swash</b>                     | 1,820,937           | 57,799               | 1,619,169                | 143,969        | 0              |
| <b>Battery Island</b>                  | 1,191,910           | 173,184              | 871,341                  | 147,385        | 0              |
| <b>Southport</b>                       | 438,636             | 27,878               | 409,598                  | 1,160          | 0              |
| <b>Baldhead-Caswell</b>                | 138,671             | 51,064               | 87,607                   | 0              | 0              |
| <b>Smith Island Channel</b>            | 928,205             | 425,159              | 503,045                  | 0              | 0              |
| <b>Baldhead Shoal Reach 1</b>          | 752,719             | 321,027              | 431,692                  | 0              | 0              |
| <b>Baldhead Shoal Reach 2</b>          | 925,511             | 276,738              | 648,171                  | 603            | 0              |
| <b>Baldhead Shoal Reach 3</b>          | 4,559,445           | 294,680              | 4,027,027                | 237,737        | 0              |
| <b>Baldhead Shoal Reach 4</b>          | 966,118             | N/A                  | 966,118                  | 0              | 0              |

The Total Quantity was computed using the surface analysis tool and calculating the difference between the bathymetry surface and the proposed dredge box. The O&M Quantity was computed using the surface analysis tool and calculating the difference between the bathymetry surface and the existing dredge boxes. The Soft Rock Quantity was computed using the surface analysis tool and calculating the difference between the top of rock surface and the proposed dredge box in areas outside the Hard Rock Boundary. The Hard Rock Quantity was computed using the surface analysis tool and calculating the difference between the top of rock surface and the proposed dredge box in areas inside the Hard Rock Boundary. Finally, the New Work (Non-Rock) Quantity was calculated by subtracting the O&M Quantity, the Soft Rock Quantity, and the Hard Rock Quantity from the Total Quantity.

## Section A.6. Future Maintenance

SAW contracted Stantec to calculate the future O&M Maintenance Work for the No Action Alternative, AA1, and AA2. Stantec used the coupled FLOW/MOR/WAVE modules to simulate morphological changes due to both suspended and bed load sediment transport for three channel deepening alternatives: NAA, AA1, and AA2. This approach incorporated riverine (flow) and coastal (tidal and wave) processes and evaluated the impact of multiple sea level change (SLC) scenarios: No SLC, SLC1 (0.5 ft), SLC2 (1.28 ft), and SLC3 (3.77 ft). The results were used to develop shoaling rates, both with and without project, along each reach of the existing and proposed navigation channel. Projected O&M dredging quantities correlate with the estimated shoaling rates. While not a direct equivalence, the correlation exists because dredging occurs only when shoaling reaches the required depth and is economically justifiable. Therefore, the estimated shoaling rate provides an indication of potential dredging volumes for each reach. It is important to consider that shoaling rates are not static; factors like storm frequency and intensity, sediment composition, and adjacent land use can lead to significant variability from year to year. Please see Table A.8: Estimated Shoaling Rates in CY/YR for NAA, Table A.9: Estimated Shoaling Rates in CY/YR for AA1, and Table A.10: Estimated Shoaling Rates in CY/YR for AA2 for results. Please refer to **Attachment 2: Channel Morphology** Study for further details on the modeling.

Table A.8: Estimated Shoaling Rates in CY/YR for NAA

| Reach                         | No SLC (CY/YR) | SLC 1 (CY/YR) | SLC 2 (CY/YR) | SLC 3 (CY/YR) |
|-------------------------------|----------------|---------------|---------------|---------------|
| <b>Anchorage Basin</b>        | 1,549,100      | 1,621,000     | 1,742,000     | 1,845,000     |
| <b>Between Channel</b>        | 401,260        | 416,450       | 425,680       | 381,940       |
| <b>Fourth East Jetty</b>      | 851,100        | 862,650       | 853,410       | 630,220       |
| <b>Upper Brunswick</b>        | 93,389         | 96,654        | 104,460       | 72,136        |
| <b>Lower Brunswick</b>        | 53,872         | 51,928        | 46,654        | 13,718        |
| <b>Upper Big Island</b>       | 56,851         | 52,662        | 45,829        | 9,687         |
| <b>Lower Big Island</b>       | 34,411         | 32,671        | 25,785        | 2,154         |
| <b>Keg Island</b>             | 5,780          | 5,558         | 4,472         | -             |
| <b>Upper Lilliput</b>         | 952            | 844           | 821           | 459           |
| <b>Lower Lilliput</b>         | 125,610        | 128,120       | 119,050       | 35,330        |
| <b>Upper Midnight</b>         | 71,727         | 72,473        | 66,736        | 30,119        |
| <b>Lower Midnight</b>         | 4,900          | 4,824         | 4,821         | 3,933         |
| <b>Reaves Point</b>           | 645            | 847           | 1,071         | 94            |
| <b>Horseshoe Shoal</b>        | 209            | 267           | 238           | 30            |
| <b>Snows Marsh</b>            | 4,227          | 5,395         | 5,887         | 484           |
| <b>Lower Swash</b>            | 1,273          | 1,255         | 1,097         | 269           |
| <b>Battery Island</b>         | 8,326          | 8,151         | 10,876        | 26,112        |
| <b>Southport</b>              | 9,264          | 8,422         | 7,440         | 7,800         |
| <b>Baldhead-Caswell</b>       | 1,663          | 1,444         | 1,251         | 333           |
| <b>Smith Island</b>           | 289,031        | 319,816       | 354,365       | 203,287       |
| <b>Baldhead Shoal Reach 1</b> | 115,876        | 114,789       | 123,026       | 65,407        |
| <b>Baldhead Shoal Reach 2</b> | 110,745        | 114,179       | 117,024       | 115,867       |

Table A.9 Estimated Shoaling Rates in CY/YR for AA1

| Reach                         | No SLC    | SLC 1     | SLC 2     | SLC 3     |
|-------------------------------|-----------|-----------|-----------|-----------|
| <b>Anchorage Basin</b>        | 1,559,600 | 1,643,700 | 1,780,600 | 1,873,800 |
| <b>Between Channel</b>        | 420,090   | 437,470   | 452,130   | 415,540   |
| <b>Fourth East Jetty</b>      | 990,930   | 999,240   | 977,630   | 714,130   |
| <b>Upper Brunswick</b>        | 145,600   | 149,240   | 152,280   | 100,500   |
| <b>Lower Brunswick</b>        | 97,135    | 89,044    | 73,179    | 24,546    |
| <b>Upper Big Island</b>       | 98,841    | 89,055    | 76,113    | 13,120    |
| <b>Lower Big Island</b>       | 62,578    | 59,460    | 51,424    | 9,644     |
| <b>Keg Island</b>             | 20,541    | 17,362    | 13,296    | 872       |
| <b>Upper Lilliput</b>         | 5,312     | 4,734     | 4,457     | 1,673     |
| <b>Lower Lilliput</b>         | 129,860   | 133,440   | 122,370   | 34,794    |
| <b>Upper Midnight</b>         | 63,296    | 64,198    | 59,439    | 24,662    |
| <b>Lower Midnight</b>         | 2,263     | 2,333     | 2,373     | 4,118     |
| <b>Reaves Point</b>           | 1,282     | 1,551     | 1,942     | 262       |
| <b>Horseshoe Shoal</b>        | 326       | 403       | 432       | 54        |
| <b>Snows Marsh</b>            | 4,319     | 5,235     | 5,914     | 1,055     |
| <b>Lower Swash</b>            | 397       | 499       | 625       | 309       |
| <b>Battery Island</b>         | 9,218     | 10,889    | 13,304    | 14,149    |
| <b>Southport</b>              | 3,115     | 3,719     | 3,933     | 7,322     |
| <b>Baldhead-Caswell</b>       | 84        | 97        | 123       | 134       |
| <b>Smith Island</b>           | 276,810   | 309,925   | 350,047   | 193,581   |
| <b>Baldhead Shoal Reach 1</b> | 131,506   | 131,413   | 136,866   | 72,510    |
| <b>Baldhead Shoal Reach 2</b> | 117,602   | 121,285   | 125,253   | 124,339   |

Table A.10: Estimated Shoaling Rates in CY/YR for AA2

| Reach                         | No SLC    | SLC 1     | SLC 2     | SLC 3     |
|-------------------------------|-----------|-----------|-----------|-----------|
| <b>Anchorage Basin</b>        | 1,544,700 | 1,629,200 | 1,764,000 | 1,876,900 |
| <b>Between Channel</b>        | 414,920   | 432,350   | 444,530   | 405,550   |
| <b>Fourth East Jetty</b>      | 951,880   | 965,030   | 942,830   | 687,240   |
| <b>Upper Brunswick</b>        | 133,750   | 138,350   | 142,070   | 95,155    |
| <b>Lower Brunswick</b>        | 84,025    | 77,806    | 64,815    | 23,671    |
| <b>Upper Big Island</b>       | 86,645    | 77,987    | 68,118    | 16,956    |
| <b>Lower Big Island</b>       | 57,671    | 56,194    | 48,500    | 8,104     |
| <b>Keg Island</b>             | 17,768    | 15,740    | 12,264    | 641       |
| <b>Upper Lilliput</b>         | 4,294     | 3,971     | 3,792     | 1,364     |
| <b>Lower Lilliput</b>         | 125,480   | 129,870   | 120,230   | 34,087    |
| <b>Upper Midnight</b>         | 62,566    | 64,071    | 57,777    | 24,615    |
| <b>Lower Midnight</b>         | 2,243     | 2,388     | 2,319     | 3,816     |
| <b>Reaves Point</b>           | 1,190     | 1,449     | 1,823     | 242       |
| <b>Horseshoe Shoal</b>        | 293       | 369       | 398       | 49        |
| <b>Snows Marsh</b>            | 4,244     | 5,153     | 5,847     | 1,041     |
| <b>Lower Swash</b>            | 373       | 471       | 592       | 295       |
| <b>Battery Island</b>         | 8,378     | 9,977     | 12,373    | 13,777    |
| <b>Southport</b>              | 3,836     | 4,266     | 4,373     | 7,660     |
| <b>Baldhead-Caswell</b>       | 106       | 127       | 148       | 160       |
| <b>Smith Island</b>           | 277,500   | 310,699   | 350,567   | 195,781   |
| <b>Baldhead Shoal Reach 1</b> | 129,823   | 126,434   | 135,207   | 70,463    |
| <b>Baldhead Shoal Reach 2</b> | 115,952   | 119,505   | 123,606   | 122,361   |

## Section A.7. Pre-construction Engineering and Design Considerations

The Pre-construction Engineering and Design (PED) phase stands as a crucial early stage in the engineering process, emphasizing planning, construction considerations, and overall project design. Below is a list of various items that will need to be considered during the PED Phase with the details following.

- Dredged Material Management
- Dredging Methodology and Equipment
- Navigation and Infrastructure Impacts

### A.7.1. Dredged Material Management

USACE has a stated goal that 70% of all dredged material should be used for beneficial purposes (i.e. bank stabilization, habitat restoration, beach renourishment). Currently, most of the dredged material from Wilmington Harbor is placed in either the Eagle Island Upland Placement Facility or the ODMDS during O&M dredging operations. Neither of these placement sites are considered beneficial use. About 15 to 20 percent of the material currently dredged from the harbor during O&M activities is used for beach renourishment or bird island restoration. Several potential beneficial use sites have been identified during the feasibility phase of this project to help increase the beneficial use rate to 70% and are outlined in *Appendix D: Beneficial Use Appendix*. More detailed design considerations will be conducted in the PED

phase such as determining the constructability of dredge placement based on soil material and site conditions, identifying challenges such as site access and capacity constraints, and mitigating risk through stakeholder collaboration.

### **A.7.2. Dredging Methodology**

The selection of dredge type and placement location for dredged material are critical decisions for the Wilmington Harbor 403 Project, carrying significant environmental and economic implications. The chosen dredge type, whether mechanical, hydraulic, or hopper, must be tailored to the specific site conditions, such as sediment type, water depth, and project timeline. Simultaneously, identifying suitable placement locations for the dredged material requires careful consideration of factors like environmental impact, transportation costs, and potential beneficial reuse options. A comprehensive analysis involving geotechnical investigations, environmental assessments, and cost-benefit analyses is essential to selecting the most efficient and sustainable dredging and placement strategy, ensuring minimal disruption to the marine ecosystem and maximizing the project's long-term benefits.

### **A.7.3. Navigation and Infrastructure Impacts**

Dredging operations can significantly impact established navigation channels, requiring careful planning of dredging sequences, placement of dredge material, and implementation of real-time vessel monitoring systems to ensure safe passage for commercial and recreational traffic. Additionally, the project's impact on existing infrastructure, such as wharves, piers, and pipelines, necessitates thorough assessments. Potential issues include undermining of structures due to dredging, increased vessel drafts affecting berthing capabilities, and the need for relocation or protection of underwater utilities. Addressing these impacts proactively through detailed engineering designs, environmental assessments, and stakeholder consultations is crucial to prevent costly delays and ensure the long-term sustainability of the Wilmington Harbor 403 project.

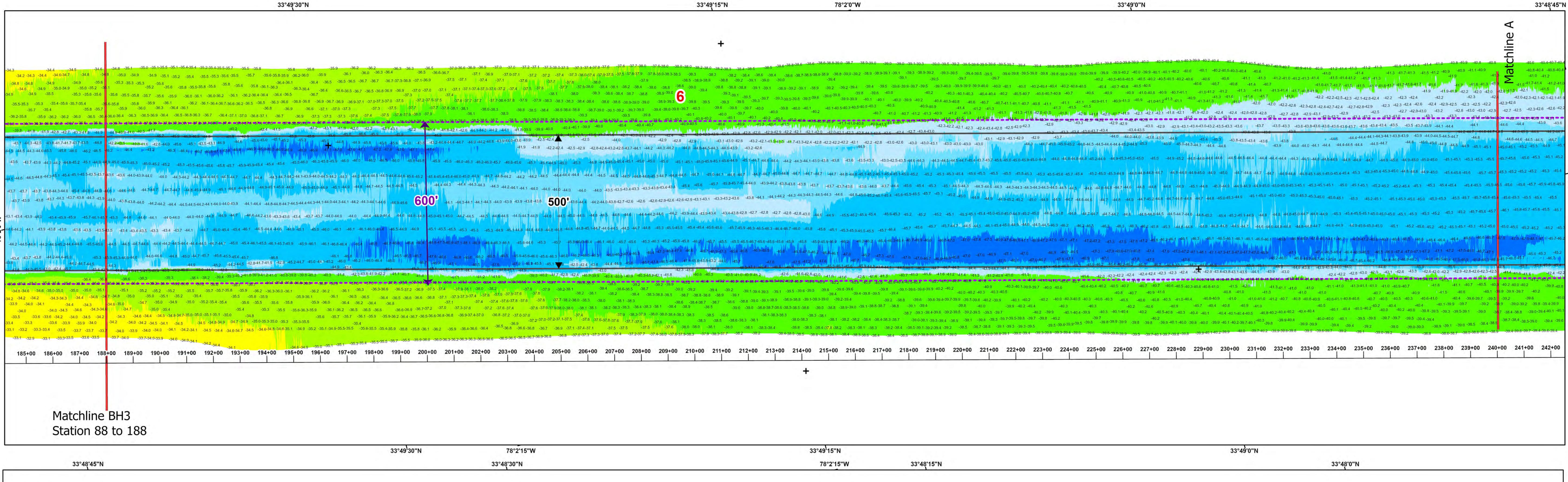
This page is intentionally left blank.



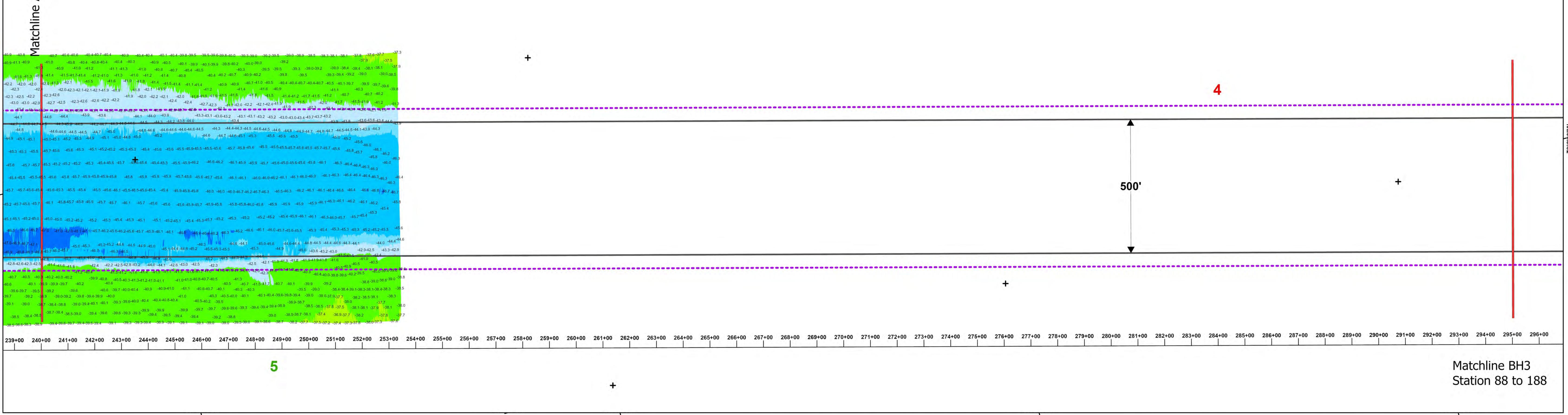
US Army Corps  
of Engineers  
Wilmington District®

# **Wilmington Harbor 403 Letter Report**

**Wilmington, North Carolina**


## **Appendix A**

## **Attachment 1: Channel Morphology**


01/24/2025

Prepared by U.S. Army Corps of Engineers  
Wilmington District  
69 Darlington Avenue  
Wilmington, North Carolina 28403

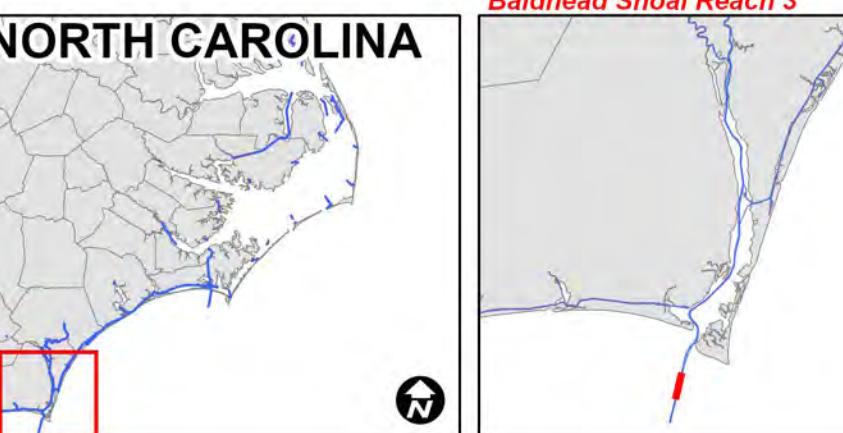
---



33°48'45"N



Matchline BH3  
Station 88 to 188


**HYDROGRAPHIC SURVEY**

U. S. ARMY ENGINEER DISTRICT  
CORPS OF ENGINEERS  
WILMINGTON, NORTH CAROLINA

Wilmington Harbor

**Baldhead Shoal  
Reach 3**

Station 188 to 205



Survey Date: 20-21 April 2023  
Map Date: 05 May 2023

Scale: 1:2,000  
File Name: WH\_01\_BH3\_20230421\_AD  
Surveyed by: TDM, SRV  
Mapped by: k7opnlac  
Processed by: k7opndjm

1983-2001 TIDAL EPOCH.

2. PROJECT SURVEYED WITH DISTRICT SURVEY VESSEL "SWART", USING RTK GPS HORIZONTAL POSITIONING EQUIPMENT AND 28 KHZ SOUNDING EQUIPMENT.

3. HORIZONTAL DATUM NAD 1983. VERTICAL DATUM M.L.L.W..

4. TIDE GAGE LOCATED AT: LIGHT 1  
USE OF TIDE VALUES FOR THIS GAGE ARE RESTRICTED TO QUALITY ASSURANCE PURPOSES FOR VERIFICATION OF RTK TIDES. THE WILMINGTON DISTRICT WILL ONLY USE STAFF GAGE TIDAL VALUES FOR FINAL MAPPING AND QUANTITY CALCULATIONS IF RTK GPS IS UNAVAILABLE AT THE TIME OF SURVEY.

5. THIS PROJECT WAS DESIGNED BY THE WILMINGTON DISTRICT OF THE U.S. ARMY CORPS OF ENGINEERS. THE INITIALS AND SIGNATURES AND REGISTRATION DESIGNATIONS OF INDIVIDUALS APPEAR ON THESE PROJECT DOCUMENTS WITHIN THE SCOPE OF THEIR EMPLOYMENT AS REQUIRED BY ER1110-1-8152.

6. THE INFORMATION DEPICTED ON THIS SURVEY MAP REPRESENTS THE RESULTS OF SURVEYS MADE ON THE DATES INDICATED AND CAN ONLY BE CONSIDERED AS INDICATING THE GENERAL CONDITIONS EXISTING AT THAT TIME. THESE CONDITIONS ARE SUBJECT TO RAPID CHANGE DUE TO SHOALING EVENTS. A PRUDENT MARINER SHOULD NOT RELY EXCLUSIVELY ON THE INFORMATION PROVIDED HERE. REQUIRED BY 33 CFR 209.325

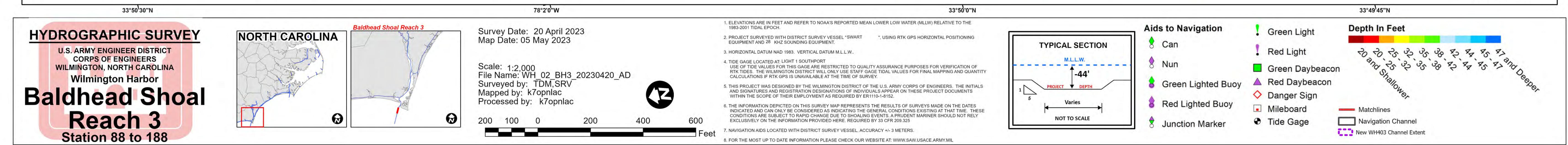
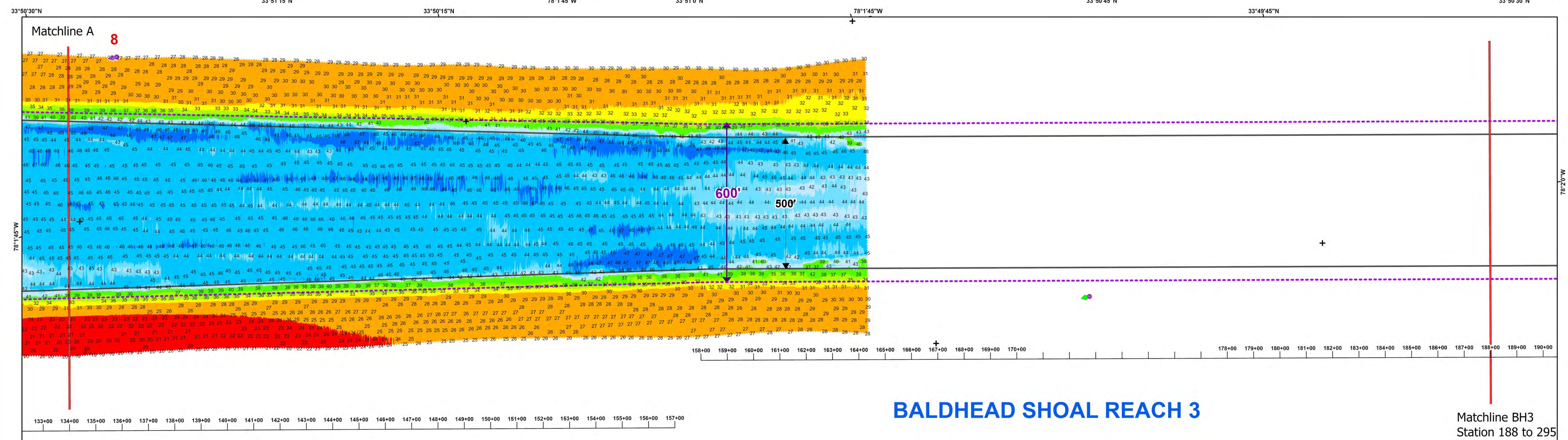
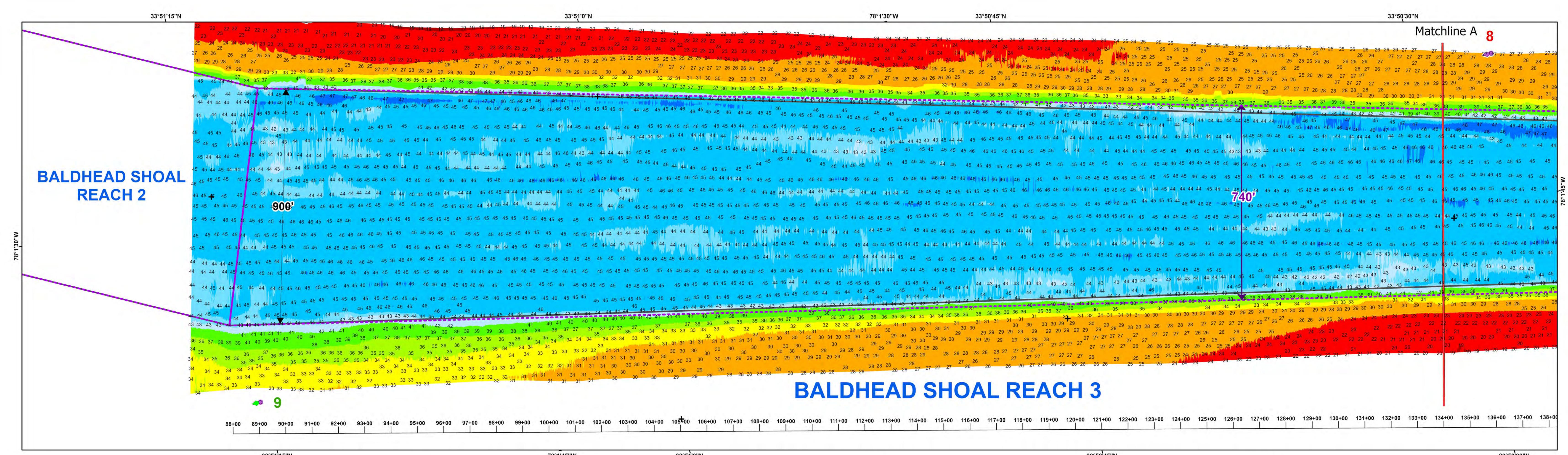
7. NAVIGATION AIDS LOCATED WITH DISTRICT SURVEY VESSEL, ACCURACY +/- 3 METERS.

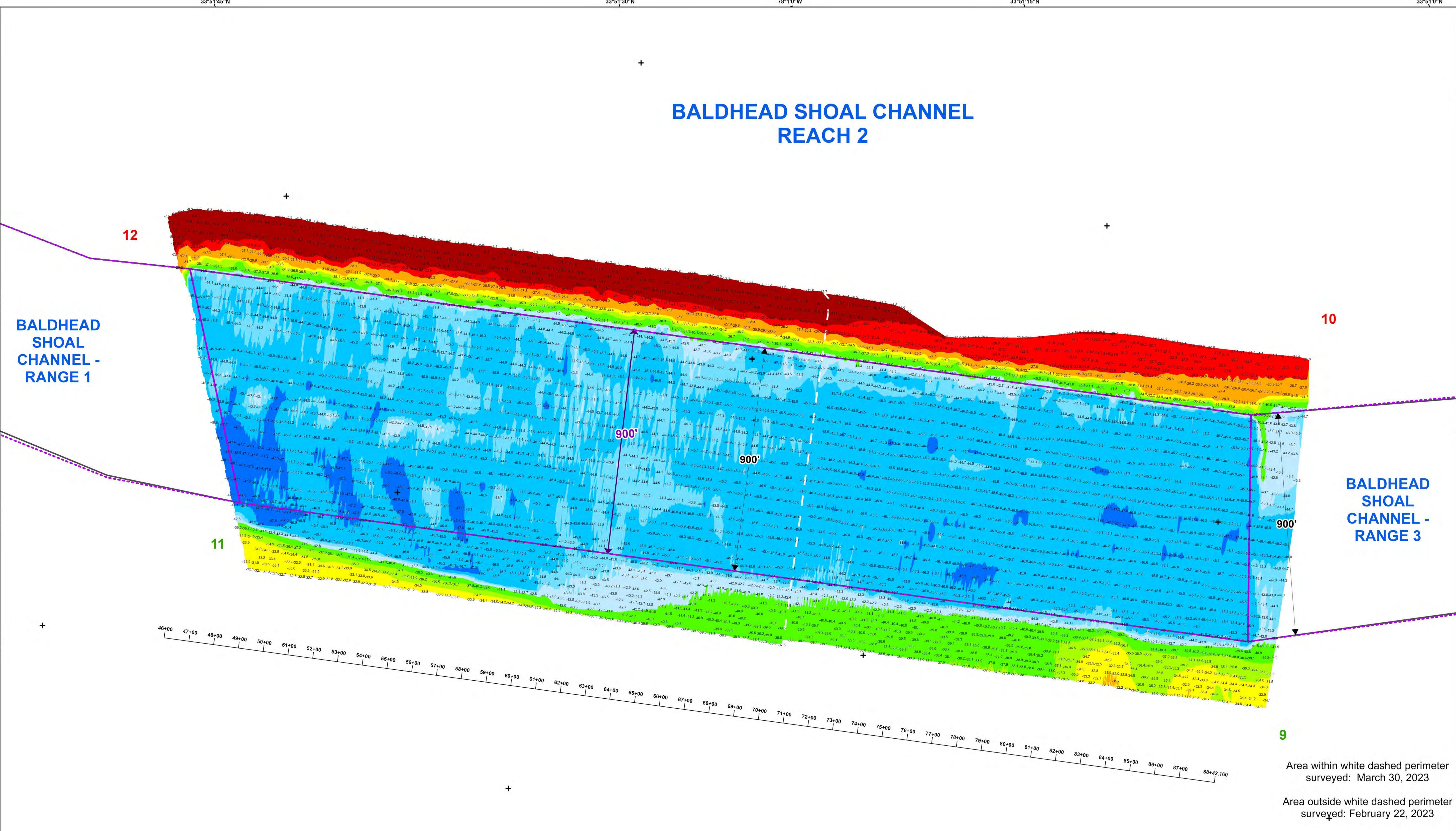
8. FOR THE MOST UP TO DATE INFORMATION PLEASE CHECK OUR WEBSITE AT: [WWW.SAW.USACE.ARMY.MIL](http://WWW.SAW.USACE.ARMY.MIL)

**TYPICAL SECTION**

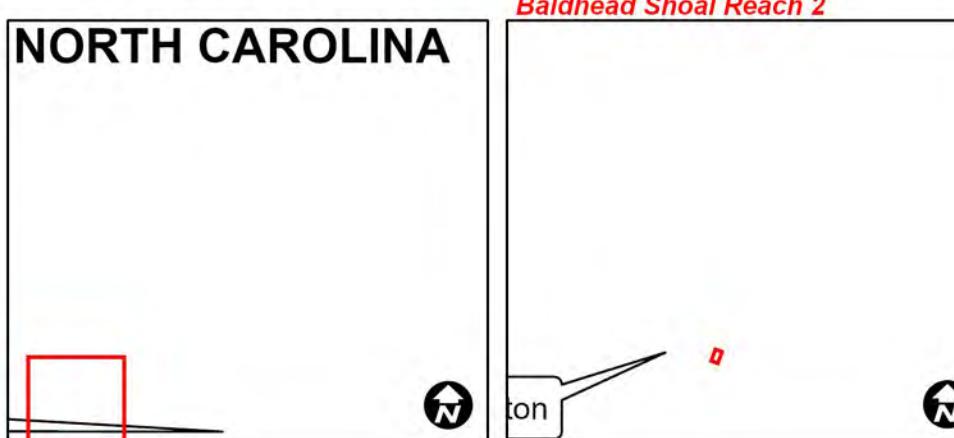
M.L.L.W.

-44'




PROJECT


DEPTH

1 5


500'

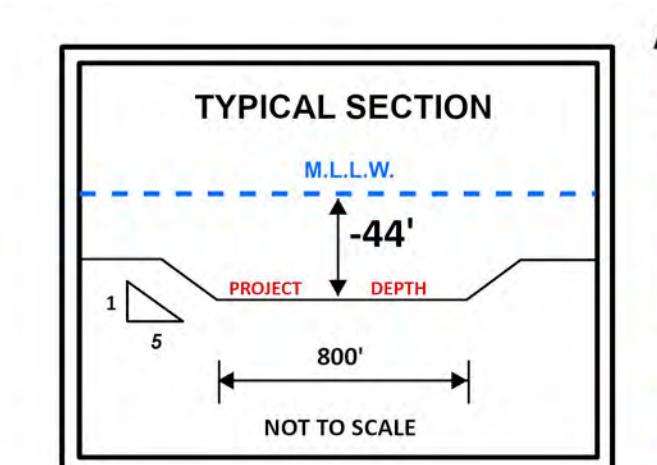
NOT TO SCALE





**HYDROGRAPHIC SURVEY**  
U.S. ARMY ENGINEER DISTRICT  
CORPS OF ENGINEERS  
WILMINGTON, NORTH CAROLINA  
Wilmington Harbor  
**Baldhead Shoal Reach 2**




Survey Date: 22 February; 30 March 2023  
Map Date: 05 May 2023  
Imagery Date: 28 January 2023  
© 2023 Maxar Technologies  
Scale: 1:2,000  
File Name: WH\_03\_BH2\_20230330\_AD  
Surveyed by: TDM.SRV  
Mapped by: K7opnplac  
Processed by: K7OPNDJM

200 100 0 200 400 600  
Feet

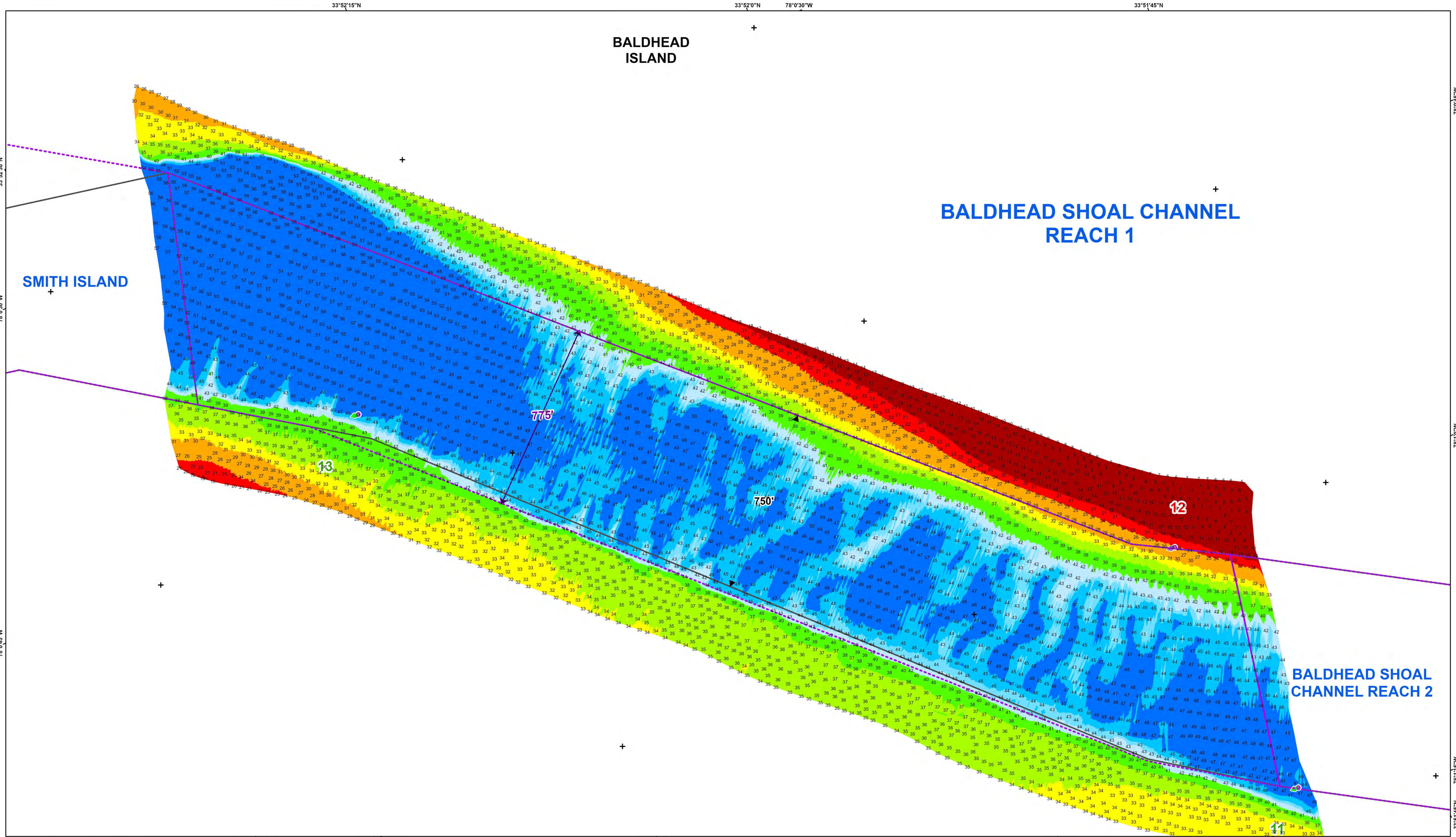
1. ELEVATIONS ARE IN FEET AND REFER TO NOAA'S REPORTED MEAN LOWER LOW WATER (MLLW) RELATIVE TO THE 1983-2001 TIDE EPOCH.  
2. PROJECT SURVEYED WITH DISTRICT SURVEY VESSEL "SWART" EQUIPMENT AND 200 kHz SOUNDING EQUIPMENT.  
3. HORIZONTAL DATUM NAD 1983. VERTICAL DATUM M.L.L.W.  
4. TIDE GAGE LOCATED AT LIGHT 1. USE TIDE VALUES FOR THIS GAGE ARE RESTRICTED TO QUALITY ASSURANCE PURPOSES FOR VERIFICATION OF RTK GPS. THIS GAGE WILL ONLY USE STAFF GAGE TIDAL VALUES FOR SURVEYING AND QUANTITY CALCULATIONS IF RTK GPS IS UNAVAILABLE AT THE TIME OF SURVEY.  
5. THIS PROJECT WAS DESIGNED BY THE WILMINGTON DISTRICT OF THE U.S. ARMY CORPS OF ENGINEERS. THE INITIALS AND SIGNATURES AND REGISTRATION DESIGNATIONS OF INDIVIDUALS APPEAR ON THESE PROJECT DOCUMENTS WITHIN THE SCOPE OF THEIR EMPLOYMENTS AS REQUIRED BY ER1101-1-8152.  
6. THE INFORMATION DEPICTED ON THIS SURVEY MAP REPRESENTS THE RESULTS OF SURVEYS MADE ON THE DATES INDICATED AND CAN ONLY BE CONSIDERED AS INDICATING THE GENERAL CONDITIONS EXISTING AT THAT TIME. THESE CONDITIONS ARE SUBJECT TO RAPID CHANGE DUE TO SHOALING EVENTS. A PROFESSIONAL MARINER SHOULD NOT RELY EXCLUSIVELY ON THE INFORMATION PROVIDED HERE. REQUIRED BY 33 CFR 200.523.

7. NAVIGATION AIDS LOCATED WITH DISTRICT SURVEY VESSEL ACCURACY +/- 3 METERS.

8. FOR THE MOST UP TO DATE INFORMATION PLEASE CHECK OUR WEBSITE AT: [WWW.SAW.USACE.ARMY.MIL](http://WWW.SAW.USACE.ARMY.MIL)



**Aids to Navigation**


- Green Light
- Red Light
- Nun
- Green Daybeacon
- Red Daybeacon
- Danger Sign
- Mileboard
- Junction Marker

**Depth In Feet**

20' 25' 30' 35' 40' 45' 47' and Deeper  
20' and Shallower

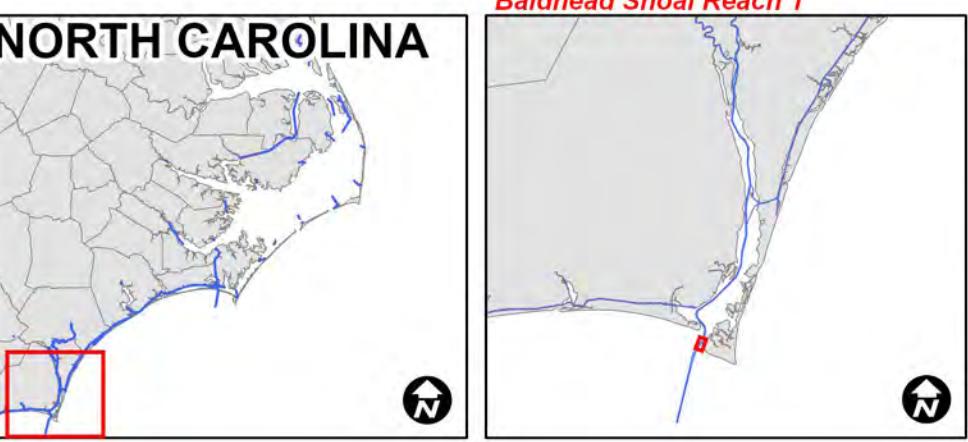
**Navigation Channel**

**New WH03 Channel Extent**



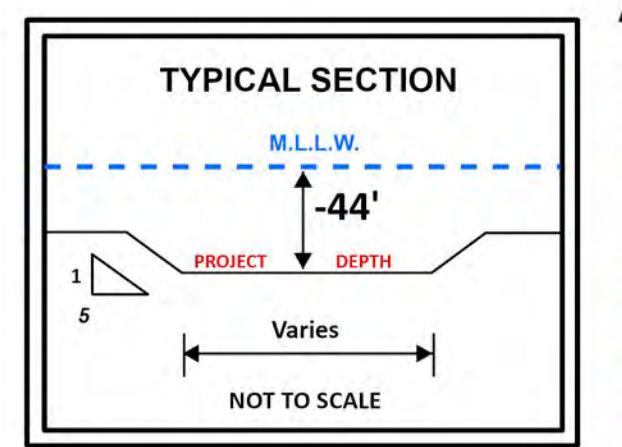
**HYDROGRAPHIC SURVEY**

U. S. ARMY ENGINEER DISTRICT  
CORPS OF ENGINEERS  
WILMINGTON, NORTH CAROLINA


Wilmington Harbor

**Baldhead Shoal**  
**Reach 1**

**U.S. ARMY ENGINEER DISTRICT  
CORPS OF ENGINEERS  
WILMINGTON, NORTH CAROLINA**


## Wilmington Harbor

# Baldhead Shoal Reach 1



Survey Date: 09 February 2023  
Map Date: 05 May 2023  
Imagery Date: 28 January 2023  
© 2023 Maxar Technologies  
Scale: 1:2,000  
File Name: WH\_04\_BH1\_20230209\_CS  
Surveyed by: TDM, SRV  
Mapped by: k7opndjm  
Processed by: k7opndjm

200 100 0 200 400 600 Feet



## ds to Navigation

! Green Light

! Red Light

■ Green Daybeacon

▲ Red Daybeacon

◆ Danger Sign

■ Mileboard

● Tide Gage

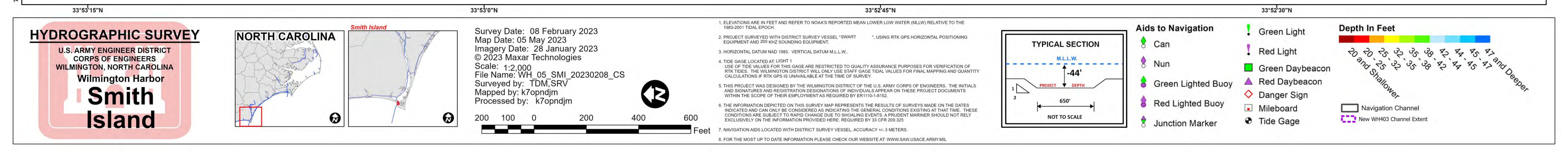
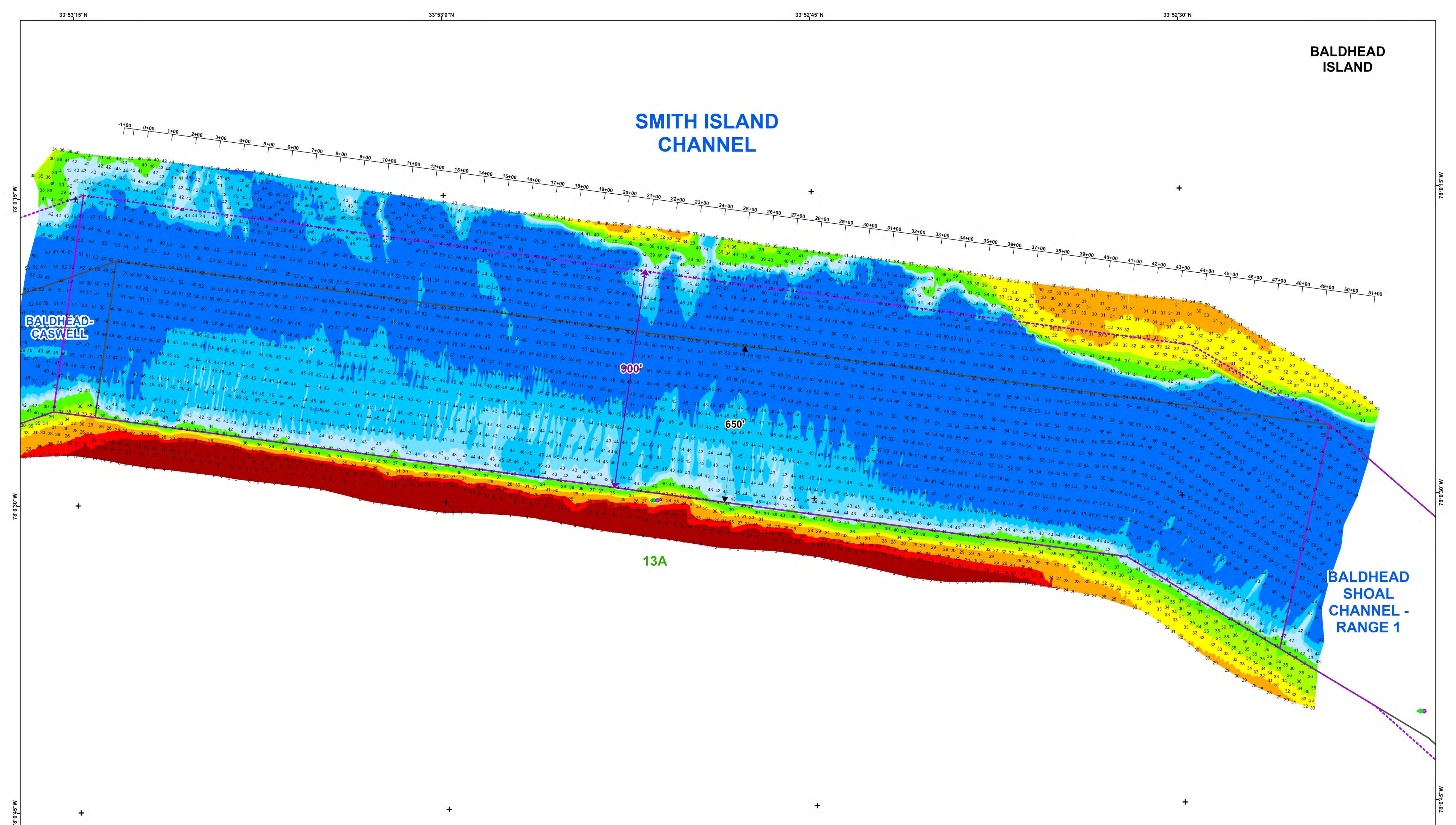
Depth In Feet

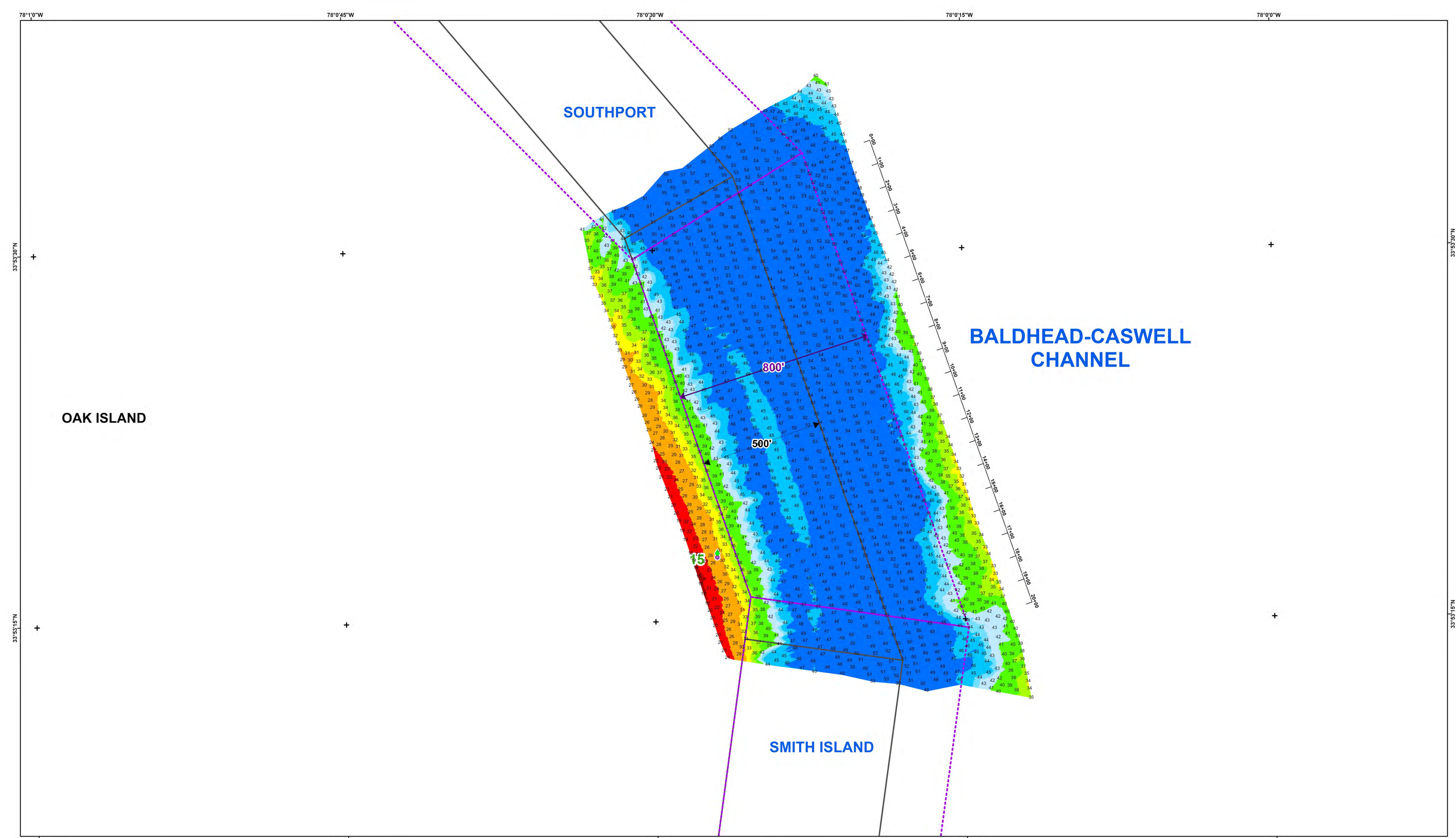
20, 25, 32, 35, 38, 42, 44, 45, 47 and Deeper

20 and Shallower

Navigation Channel

New WH403 Channel Extent



Depth In Feet


20, 25, 32, 35, 38, 38, 42, 42, 44, 44, 45, 45, 47, and Deeper

and Shallower

Navigation Channel

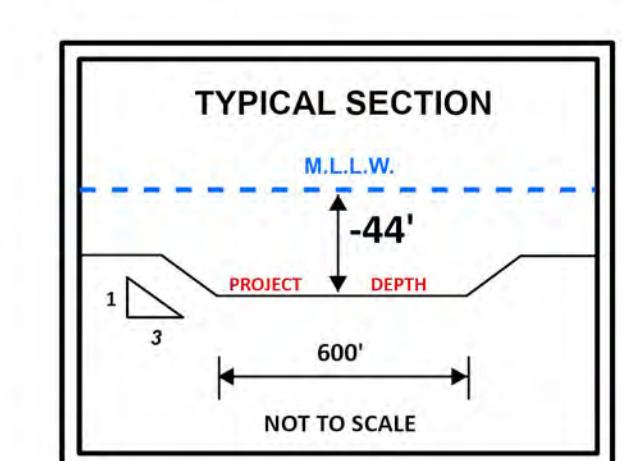
New WH403 Channel Extent





## HYDROGRAPHIC SURVEY

U.S. ARMY ENGINEER DISTRICT  
CORPS OF ENGINEERS  
WILMINGTON, NORTH CAROLINA  
Wilmington Harbor  
**Baldhead-Caswell**




Survey Date: 02 May 2023  
Map Date: 05 May 2023  
Imagery Date: 28 January 2023  
© 2023 Maxar Technologies  
Scale: 1:2,000  
File Name: WH\_06\_BHC\_20230502\_CS  
Surveyed by: WJC, JBD  
Mapped by: k7opnlac  
Processed by: k7opnlac

200 100 0 200 400 600  
Feet

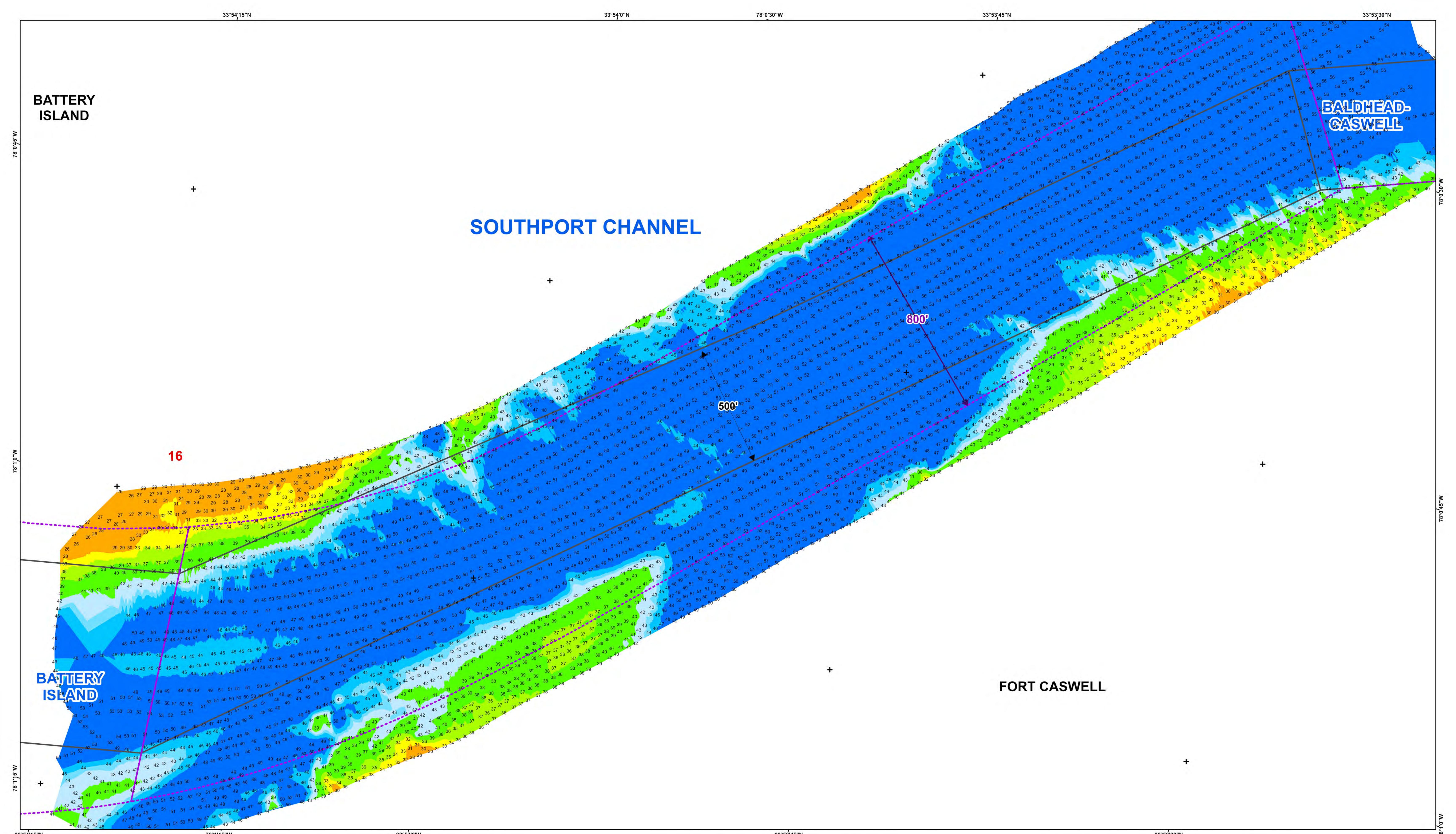


1. ELEVATIONS ARE IN FEET AND REFER TO NOAA'S REPORTED MEAN LOWER LOW WATER (MLLW) RELATIVE TO THE 1983-2001 TIDE EPOCH.  
2. PROJECT SURVEYED WITH DISTRICT SURVEY VESSEL "SANDERSON", USING RTK GPS HORIZONTAL POSITIONING EQUIPMENT AND 200 kHz SOUNDING EQUIPMENT.  
3. HORIZONTAL DATUM NAD 1983, VERTICAL DATUM N.L.L.W.  
4. TIDE GAGE LOCATED AT LIGHT 1. USE TIDE VALUES FOR THIS GAGE ARE RESTRICTED TO QUALITY ASSURANCE PURPOSES FOR VERIFICATION OF RTK TIDES. THIS INFORMATION WILL ONLY USE STAFF GAGE TIDAL VALUES FOR FINAL MAPPING AND QUANTITY CALCULATIONS IF RTK GPS IS UNAVAILABLE AT THE TIME OF SURVEY.  
5. THIS PROJECT WAS DESIGNED BY THE WILMINGTON DISTRICT OF THE U.S. ARMY CORPS OF ENGINEERS. THE INITIALS AND SIGNATURES AND REGISTRATION DESIGNATIONS OF INDIVIDUALS APPEAR ON THESE PROJECT DOCUMENTS WITHIN THE SCOPE OF THEIR EMPLOYMENTS AS REQUIRED BY ER1101-1-8152.  
6. THE INFORMATION DEPICTED ON THIS SURVEY MAP REPRESENTS THE RESULTS OF SURVEYS MADE ON THE DATES INDICATED AND CAN ONLY BE CONSIDERED AS INDICATING THE GENERAL CONDITIONS EXISTING AT THAT TIME. THESE CONDITIONS ARE SUBJECT TO RAPID CHANGE DUE TO SHOALING VESSELS. A PROFESSIONAL MARINER SHOULD NOT RELY EXCLUSIVELY ON THE INFORMATION PROVIDED HERE, REQUIRED BY 33 CFR 209.352.  
7. NAVIGATION AIDS LOCATED WITH DISTRICT SURVEY VESSEL ACCURACY +/- 3 METERS.  
8. FOR THE MOST UP TO DATE INFORMATION PLEASE CHECK OUR WEBSITE AT [WWW.SAU.SACE.ARMY.MIL](http://WWW.SAU.SACE.ARMY.MIL).



**Aids to Navigation**

- Green Light
- Red Light
- Nun
- Green Daybeacon
- Red Daybeacon
- Danger Sign
- Mileboard
- Junction Marker


**Depth In Feet**

20' and Shallower

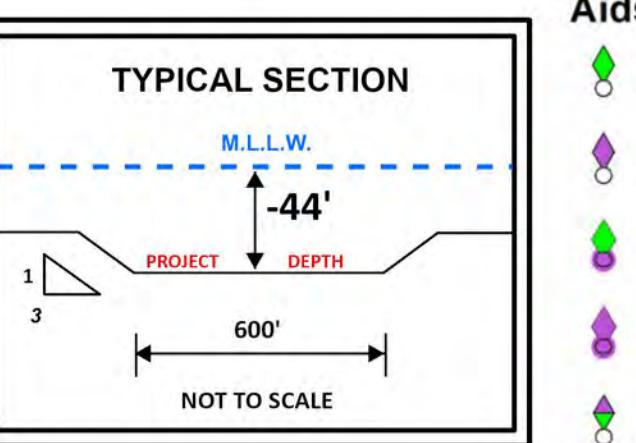
20 25 30 35 38 42 44 45 47 and Deeper

Navigation Channel

New WH403 Channel Extent



## HYDROGRAPHIC SURVEY


U.S. ARMY ENGINEER DISTRICT  
CORPS OF ENGINEERS  
WILMINGTON, NORTH CAROLINA  
Wilmington Harbor  
**Southport Channel**

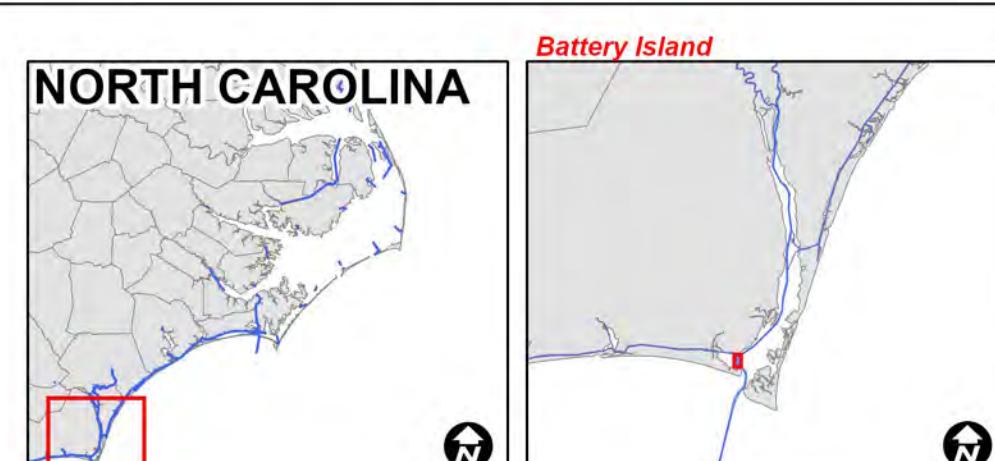
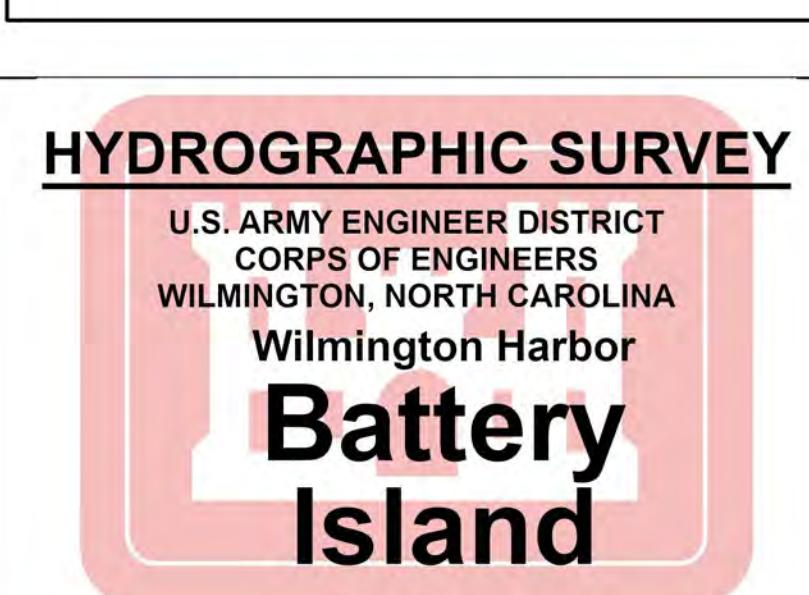
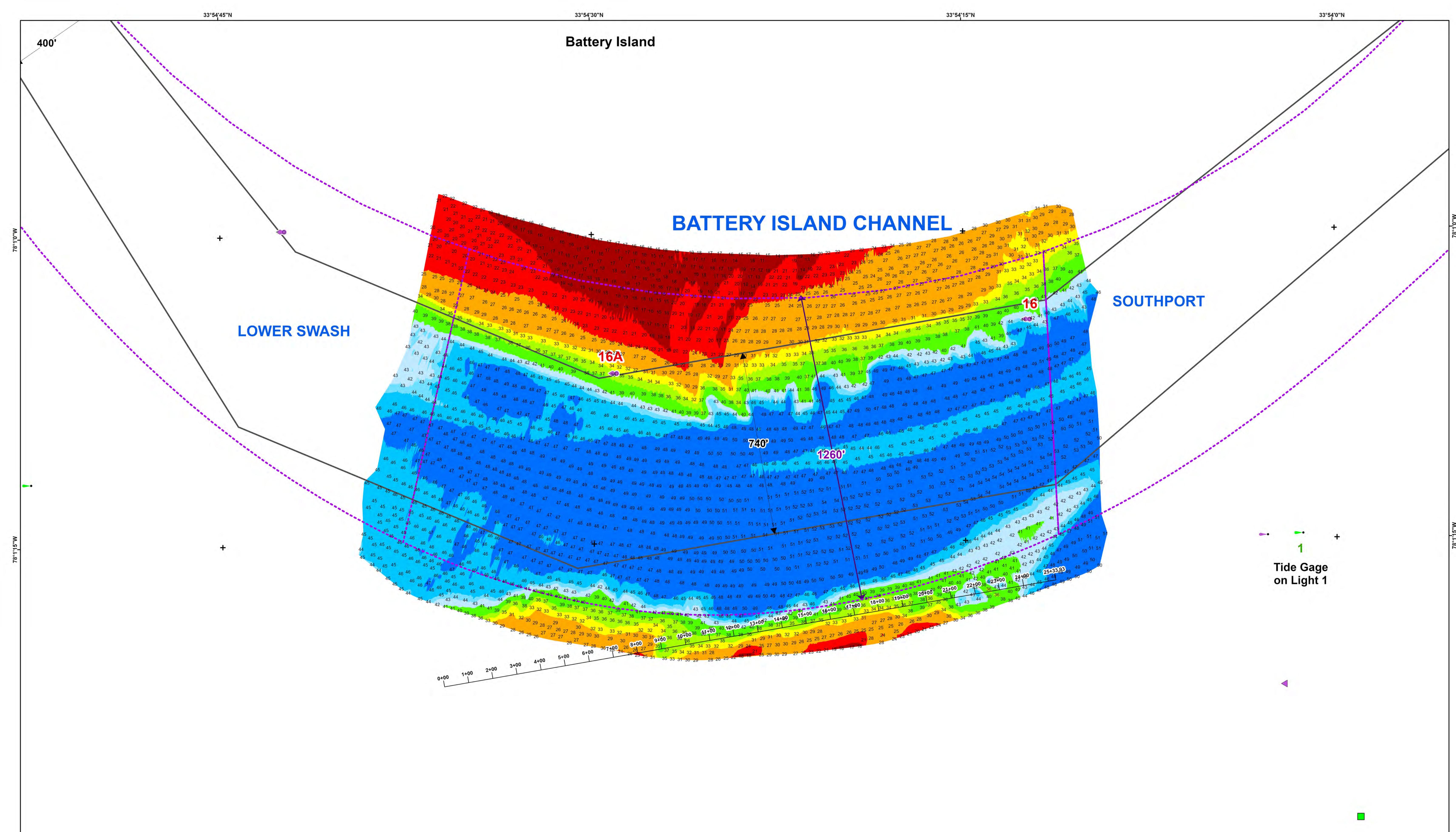


Survey Date: 07 February 2023  
Map Date: 05 May 2023  
Imagery Date: 23 January 2023  
© 2023 Maxar Technologies  
Scale: 1:2,000  
File Name: WH\_07\_SPT\_20230207\_CS  
Surveyed by: DJD,LMT,TDM  
Mapped by: k7opndjm  
Processed by: k7opndjm

200 100 0 200 400 600  
Feet

1. ELEVATIONS ARE IN FEET AND REFER TO NOAA'S REPORTED MEAN LOWER LOW WATER (MLLW) RELATIVE TO THE 1983-2001 TIDE EPOCH.  
2. PROJECT SURVEYED WITH DISTRICT SURVEY VESSEL "SWART" EQUIPMENT AND 200 kHz SOUNDING EQUIPMENT.  
3. HORIZONTAL DATUM NAD 1983. VERTICAL DATUM M.L.L.W.  
4. TIDE GAGE LOCATED AT LIGHT 1. USE TIDE VALUES FOR THIS GAGE ARE RESTRICTED TO QUALITY ASSURANCE PURPOSES FOR VERIFICATION OF RTK GPS. THIS DISTRICT WILL ONLY USE STAFF GAGE TIDAL VALUES FOR FINAL MAPPING AND QUANTITY CALCULATIONS IF RTK GPS IS UNAVAILABLE AT THE TIME OF SURVEY.  
5. THIS PROJECT WAS DESIGNED BY THE WILMINGTON DISTRICT OF THE U.S. ARMY CORPS OF ENGINEERS. THE INITIALS AND SIGNATURES AND REGISTRATION DESIGNATIONS OF INDIVIDUALS APPEAR ON THESE PROJECT DOCUMENTS WITHIN THE SCOPE OF THEIR EMPLOYMENTS AS REQUIRED BY ER110-1-8152.  
6. THE INFORMATION DEPICTED ON THIS SURVEY MAP REPRESENTS THE RESULTS OF SURVEYS MADE ON THE DATES INDICATED AND CAN ONLY BE CONSIDERED AS INDICATING THE GENERAL CONDITIONS EXISTING AT THAT TIME. THESE CONDITIONS ARE SUBJECT TO RAPID CHANGE DUE TO SHOALING EVENTS. A PRUDENT MARINER SHOULD NOT RELY EXCLUSIVELY ON THE INFORMATION PROVIDED HERE. REQUIRED BY 33 CFR 209.323.  
7. NAVIGATION AIDS LOCATED WITHIN DISTRICT SURVEY VESSEL ACCURACY +/- 3 METERS.  
8. FOR THE MOST UP TO DATE INFORMATION PLEASE CHECK OUR WEBSITE AT [WWW.SAVUSACE.ARMY.MIL](http://WWW.SAVUSACE.ARMY.MIL)

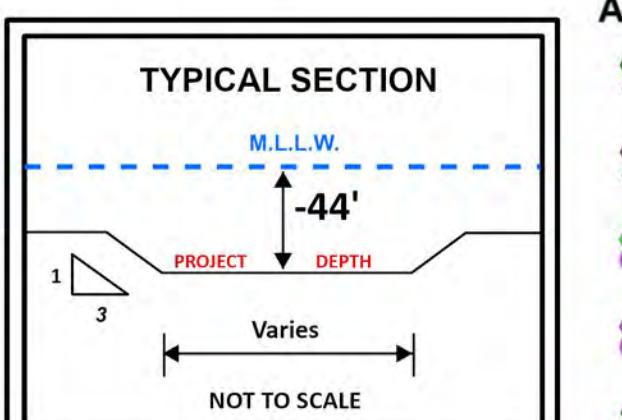


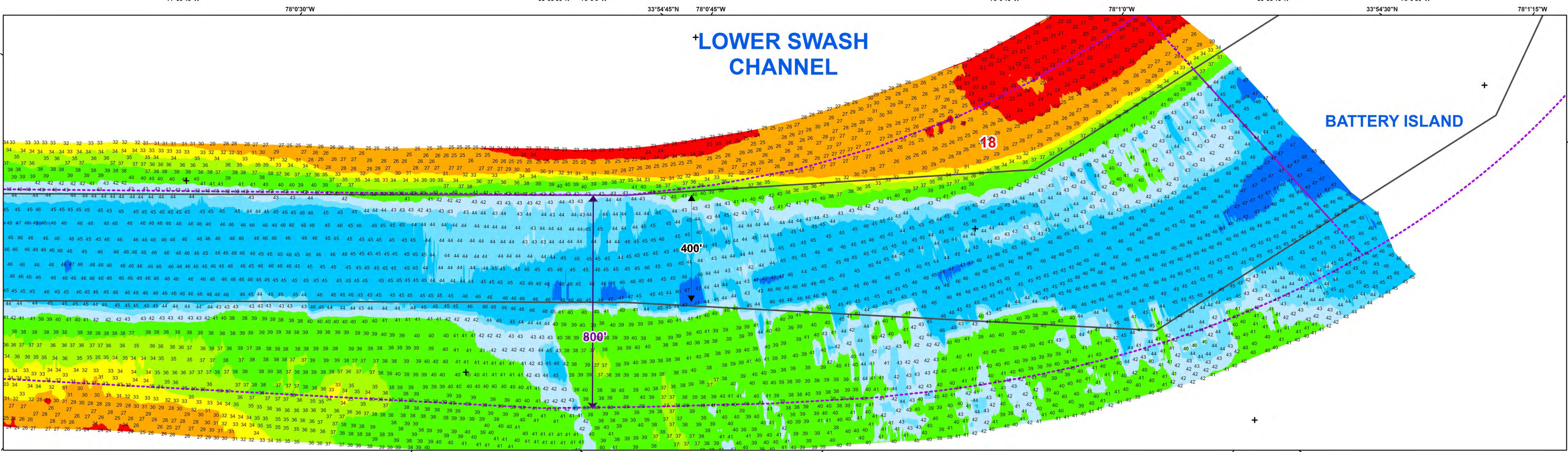
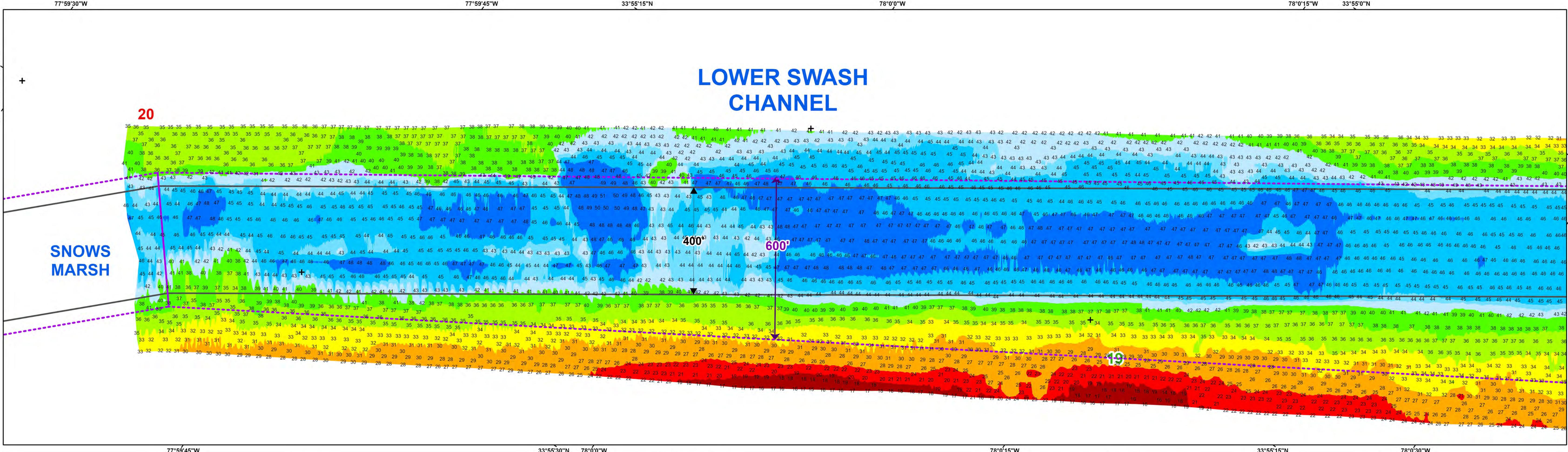



### Aids to Navigation

- Green Light
- Red Light
- Nun
- Green Daybeacon
- Red Daybeacon
- Danger Sign
- Mileboard
- Junction Marker

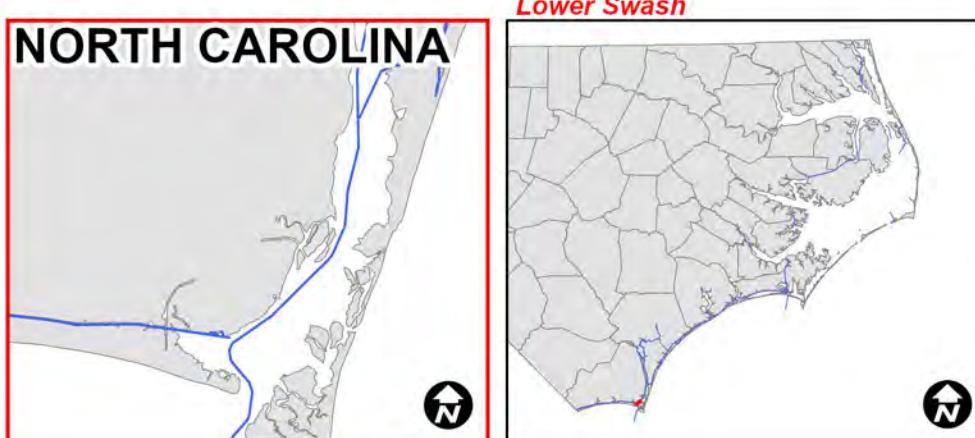
Depth In Feet  
20 and Shallower

Navigation Channel


New WH03 Channel Extent


Survey Date: 04 May 2023  
Map Date: 05 May 2023  
Imagery Date: 28 January 2023  
© 2023 Maxar Technologies  
Scale: 1:2,000  
File Name: WH\_08\_BAT\_20230504\_CS  
Surveyed by: JCC,TDM,SRV,DJD  
Mapped by: k7opnlac  
Processed by: k7opnlac

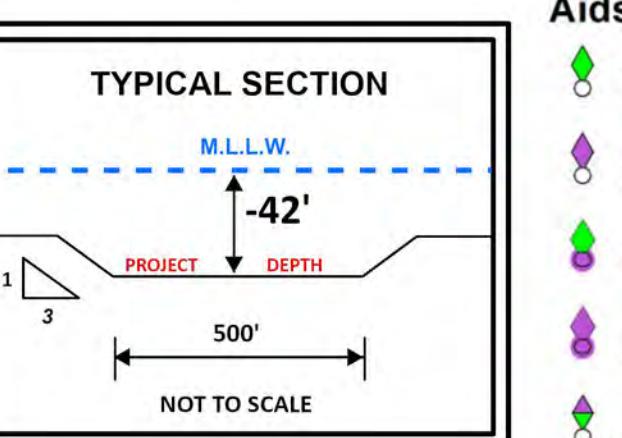

200 100 0 200 400 600

1. ELEVATIONS ARE IN FEET AND REFER TO NOAA'S REPORTED MEAN LOWER LOW WATER (MLLW) RELATIVE TO THE 1983-2001 TIDAL EPOCH.
2. PROJECT SURVEYED WITH DISTRICT SURVEY VESSEL "SWART", USING RTK GPS HORIZONTAL POSITIONING EQUIPMENT AND 200 KHZ SOUNDING EQUIPMENT.
3. HORIZONTAL DATUM NAD 1983. VERTICAL DATUM M.L.L.W..
4. TIDE GAGE LOCATED AT: LIGHT 1 SOUTHPORT  
USE OF TIDE VALUES FOR THIS GAGE ARE RESTRICTED TO QUALITY ASSURANCE PURPOSES FOR VERIFICATION OF RTK TIDES. THE WILMINGTON DISTRICT WILL ONLY USE STAFF GAGE TIDAL VALUES FOR FINAL MAPPING AND QUANTITY CALCULATIONS IF RTK GPS IS UNAVAILABLE AT THE TIME OF SURVEY.
5. THIS PROJECT WAS DESIGNED BY THE WILMINGTON DISTRICT OF THE U.S. ARMY CORPS OF ENGINEERS. THE INITIALS AND SIGNATURES AND REGISTRATION DESIGNATIONS OF INDIVIDUALS APPEAR ON THESE PROJECT DOCUMENTS WITHIN THE SCOPE OF THEIR EMPLOYMENT AS REQUIRED BY ER1110-1-8152.
6. THE INFORMATION DEPICTED ON THIS SURVEY MAP REPRESENTS THE RESULTS OF SURVEYS MADE ON THE DATES INDICATED AND CAN ONLY BE CONSIDERED AS INDICATING THE GENERAL CONDITIONS EXISTING AT THAT TIME. THESE CONDITIONS ARE SUBJECT TO RAPID CHANGE DUE TO SHOALING EVENTS. A PRUDENT MARINER SHOULD NOT RELY EXCLUSIVELY ON THE INFORMATION PROVIDED HERE. REQUIRED BY 33 CFR 209.325
7. NAVIGATION AIDS LOCATED WITH DISTRICT SURVEY VESSEL, ACCURACY +/- 3 METERS.





**HYDROGRAPHIC SURVEY**  
U.S. ARMY ENGINEER DISTRICT  
CORPS OF ENGINEERS  
WILMINGTON, NORTH CAROLINA  
Wilmington Harbor  
**Lower Swash**




Survey Date: 31 January & 02 February 2023  
Map Date: 05 May 2023

Scale: 1:2,000  
File Name: WH\_09\_LSW\_20230131\_CS  
Surveyed by: TDM.SRV  
Mapped by: k7opndjm  
Processed by: k7opndjm

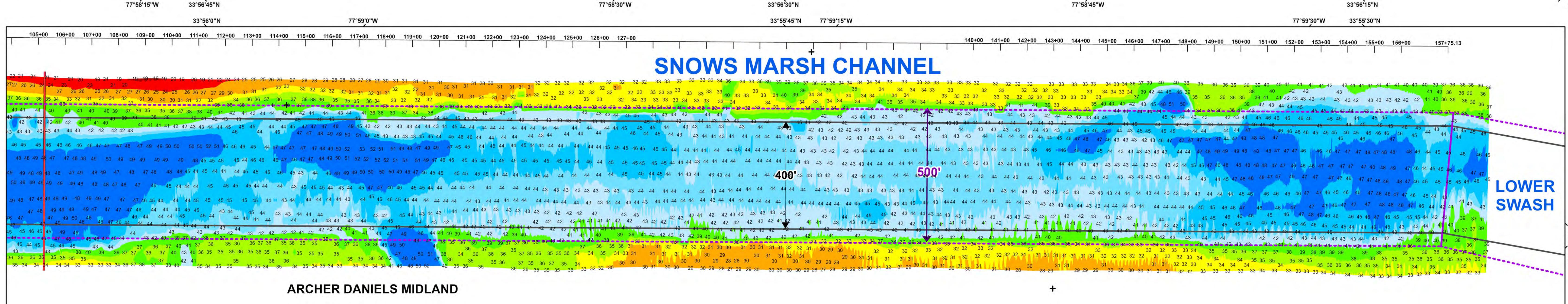
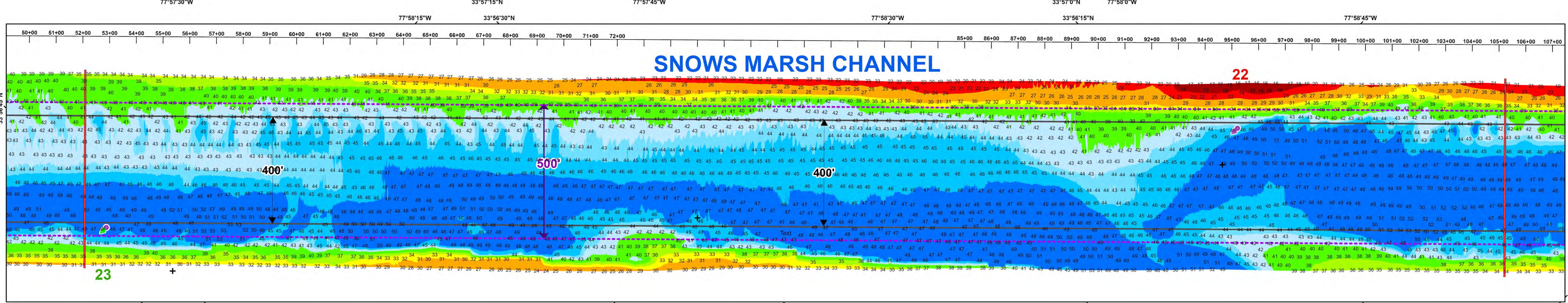
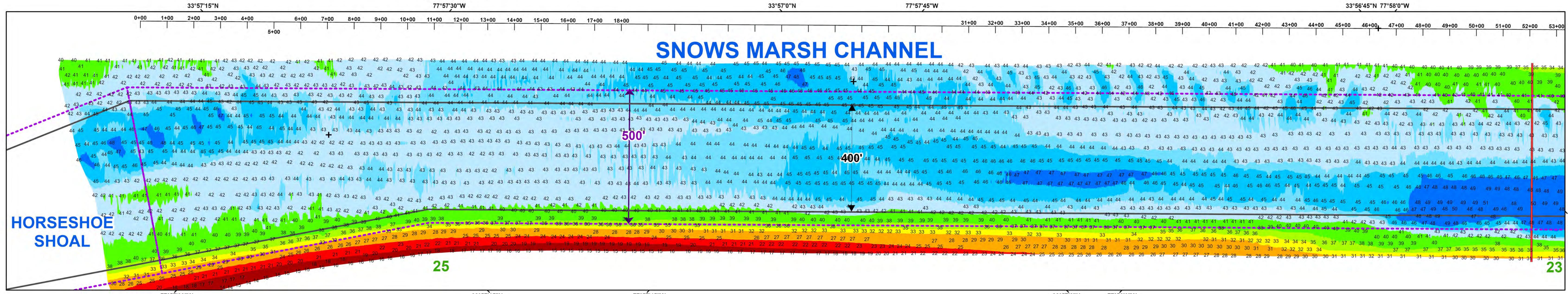
200 100 0 200 400 600  
Feet

1. ELEVATIONS ARE IN FEET AND REFER TO NOAA'S REPORTED MEAN LOWER LOW WATER (MLLW) RELATIVE TO THE 1983-2001 TIDE EPOCH.  
2. PROJECT SURVEYED WITH DISTRICT SURVEY VESSEL "SWARTH" EQUIPMENT AND 200 kHz SOUNDING EQUIPMENT.  
3. HORIZONTAL DATUM NAD 1983. VERTICAL DATUM M.L.L.W.  
4. TIDE GAGE LOCATED AT LIGHT 1. USE TIDE VALUES FOR THIS GAGE ARE RESTRICTED TO QUALITY ASSURANCE PURPOSES FOR VERIFICATION OF RTK GPS. THIS GAGE WILL ONLY USE STAFF GAGE TIDAL VALUES FOR FINAL MAPPING AND QUANTITY CALCULATIONS IF RTK GPS IS UNAVAILABLE AT THE TIME OF SURVEY.  
5. THIS PROJECT WAS DESIGNED BY THE WILMINGTON DISTRICT OF THE U.S. ARMY CORPS OF ENGINEERS. THE INITIALS AND SIGNATURES AND REGISTRATION DESIGNATIONS OF INDIVIDUALS APPEAR ON THESE PROJECT DOCUMENTS WITHIN THE SCOPE OF THEIR EMPLOYMENTS AS REQUIRED BY ER1101-1-8152.  
6. THE INFORMATION DEPICTED ON THIS SURVEY MAP REPRESENTS THE RESULTS OF SURVEYS MADE ON THE DATES INDICATED AND CAN ONLY BE CONSIDERED AS INDICATING THE GENERAL CONDITIONS EXISTING AT THAT TIME. THESE CONDITIONS ARE SUBJECT TO RAPID CHANGE DUE TO SHOALING EVENTS. A PRUDENT MARINER SHOULD NOT RELY EXCLUSIVELY ON THE INFORMATION PROVIDED HERE, REQUIRED BY 33 CFR 209.523.  
7. NAVIGATION AIDS LOCATED WITH DISTRICT SURVEY VESSEL ACCURACY +/- 3 METERS.  
8. FOR THE MOST UP TO DATE INFORMATION PLEASE CHECK OUR WEBSITE AT [WWW.SAW.SACE.ARMY.MIL](http://WWW.SAW.SACE.ARMY.MIL)



**Aids to Navigation**

- Green Light
- Red Light
- Nun
- Green Daybeacon
- Red Daybeacon
- Danger Sign
- Mileboard
- Junction Marker




**Depth In Feet**

20' 25' 30' 35' 40' 45' 50' 55' 60' and Deeper  
20 and Shallower

20 25 30 35 40 45 50 55 60 and Deeper  
20 and Shallower

Navigation Channel

New WH403 Channel Extent



**HYDROGRAPHIC SURVEY**

---

U.S. ARMY ENGINEER DISTRICT  
CORPS OF ENGINEERS  
WILMINGTON, NORTH CAROLINA

Wilmington Harbor

**Snows  
Marsh**

**U.S. ARMY ENGINEER DISTRICT  
CORPS OF ENGINEERS  
WILMINGTON, NORTH CAROLINA**

## Wilmington Harbor

# Snows Marsh

A map showing a coastal area with a red line drawn across it, likely representing a transect or a specific boundary. The map includes a north arrow in the bottom right corner.

Survey Date: 27 February & 02 March 2023  
Report Date: 04 May 2023

Scale: 1:2,000  
File Name: WH\_10\_SNO\_20230227\_CS  
Surveyed by: TDM, SRV  
Plotted by: k7opnagf  
Processed by: k7opnagf

0 100 0 200 400

AIDS LOCATED V

DISTRICT SURVEY VESSEL "SWART", USING RTK GPS HORIZONTAL POSITIONING  
OUNDING EQUIPMENT.

33. VERTICAL DATUM M.L.L.W..

AVES POINT

IS GAGE ARE RESTRICTED TO QUALITY ASSURANCE PURPOSES FOR VERIFICATION OF  
ON DISTRICT WILL ONLY USE STAFF GAGE TIDAL VALUES FOR FINAL MAPPING AND QUANTITY  
IS UNAVAILABLE AT THE TIME OF SURVEY.

ED BY THE WILMINGTON DISTRICT OF THE U.S. ARMY CORPS OF ENGINEERS. THE INITIALS  
STRATION DESIGNATIONS OF INDIVIDUALS APPEAR ON THESE PROJECT DOCUMENTS  
R EMPLOYMENT AS REQUIRED BY ER1110-1-8152.

ON THIS SURVEY MAP REPRESENTS THE RESULTS OF SURVEYS MADE ON THE DATES  
E CONSIDERED AS INDICATING THE GENERAL CONDITIONS EXISTING AT THAT TIME. THESE  
TO RAPID CHANGE DUE TO SHOALING EVENTS. A PRUDENT MARINER SHOULD NOT RELY  
RMATION PROVIDED HERE. REQUIRED BY 33 CFR 209.325

WITH DISTRICT SURVEY VESSEL, ACCURACY +/- 3 METERS.

INFORMATION PLEASE CHECK OUR WEBSITE AT: [WWW.SAW.USACE.ARMY.MIL](http://WWW.SAW.USACE.ARMY.MIL)

**TYPICAL SECTION**

M.L.L.W.

-42'

PROJECT

DEPTH

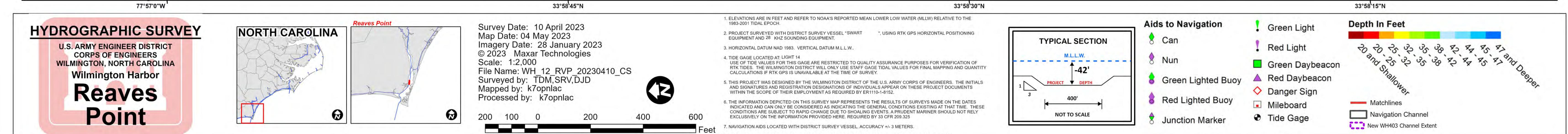
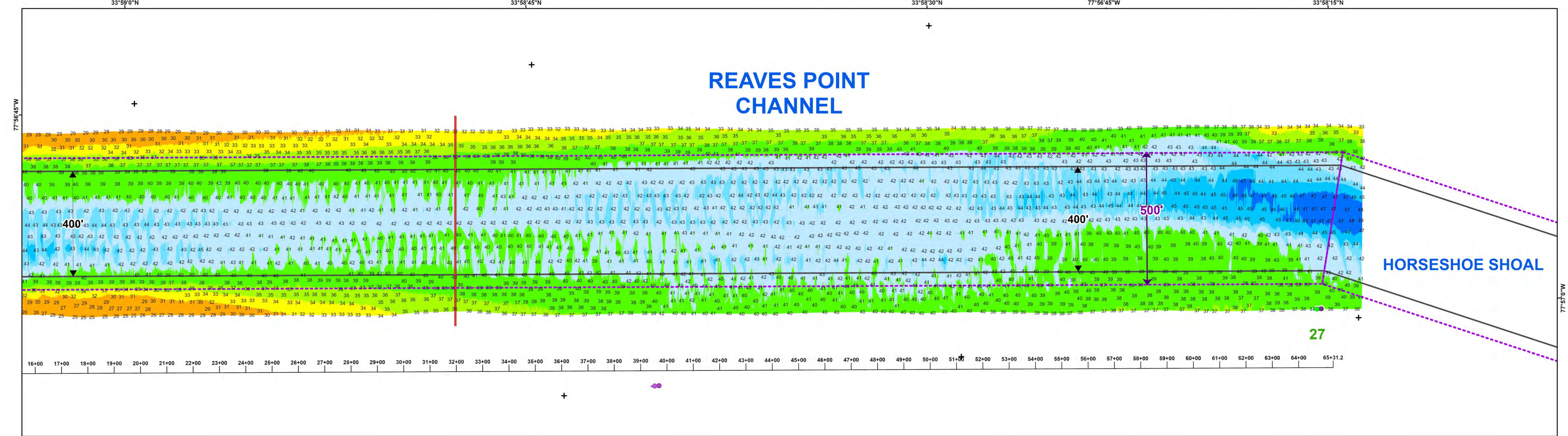
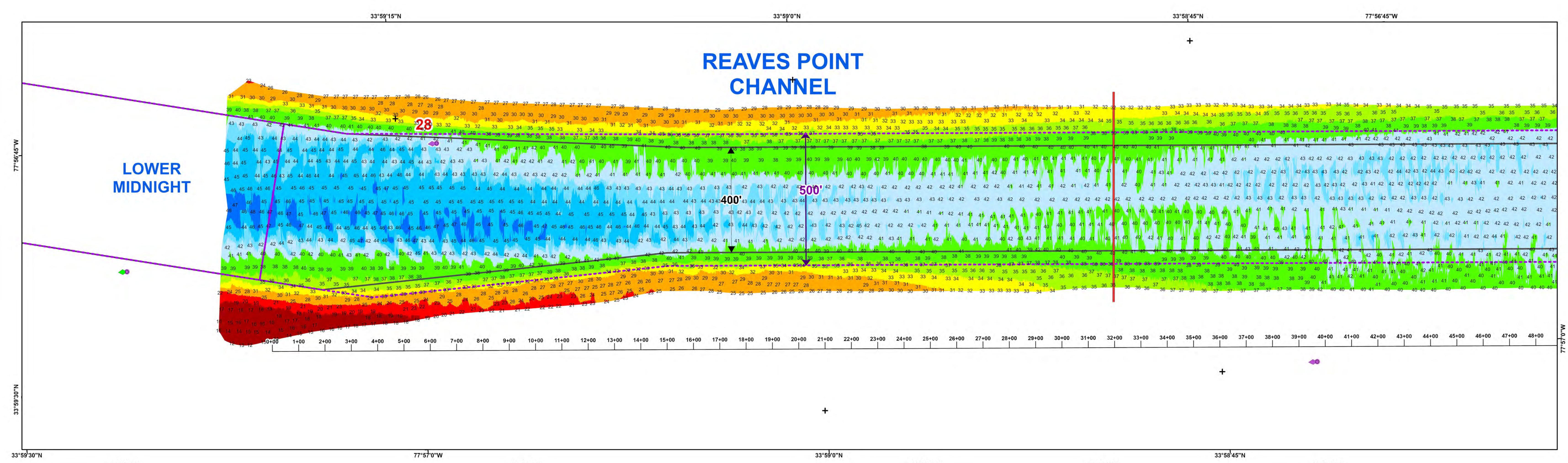
3

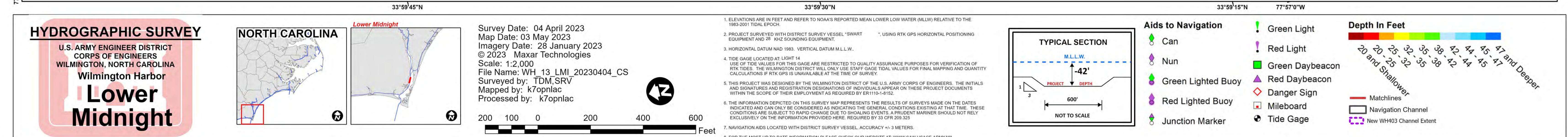
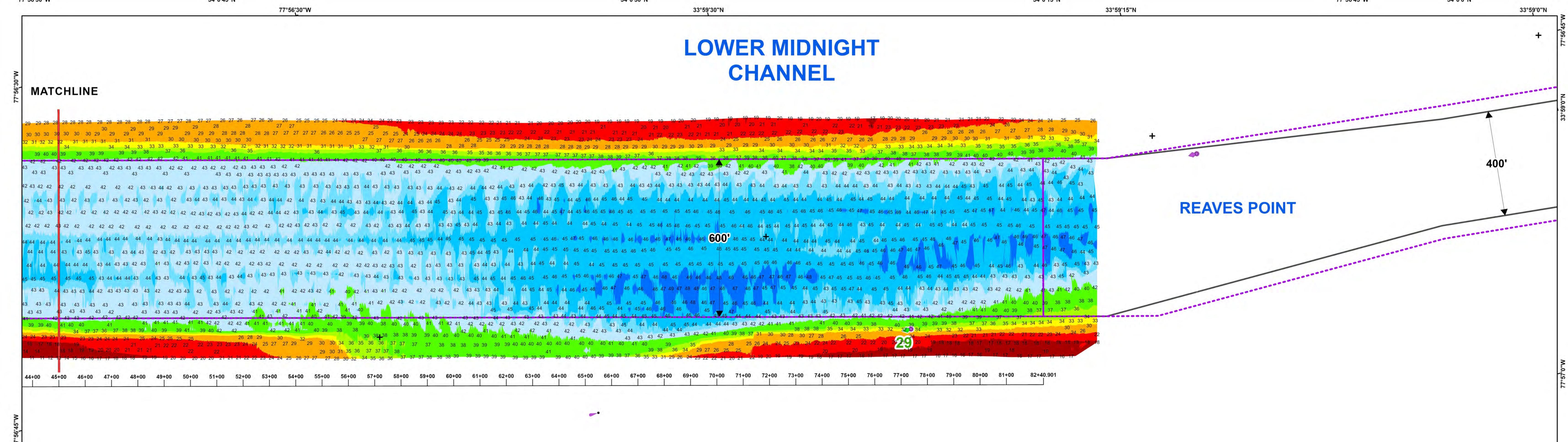
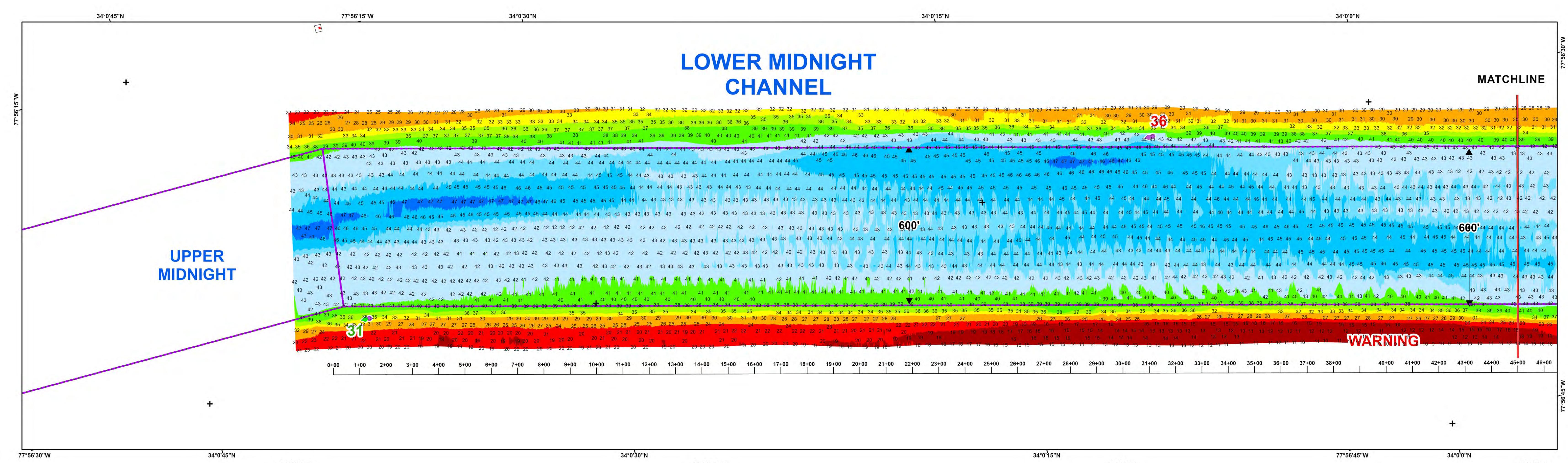
400'

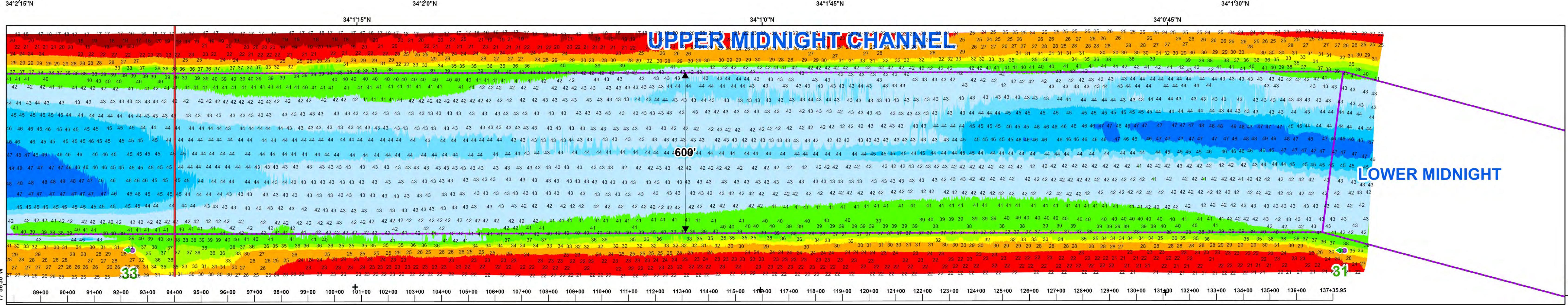
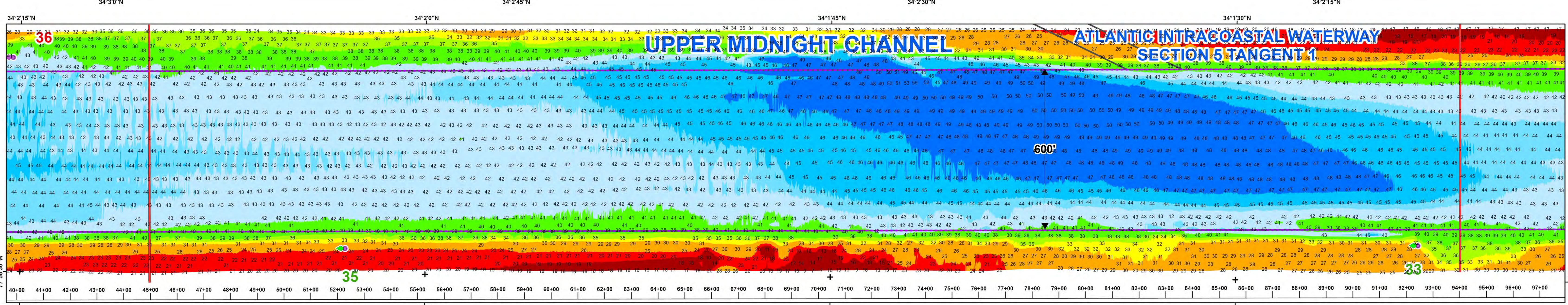
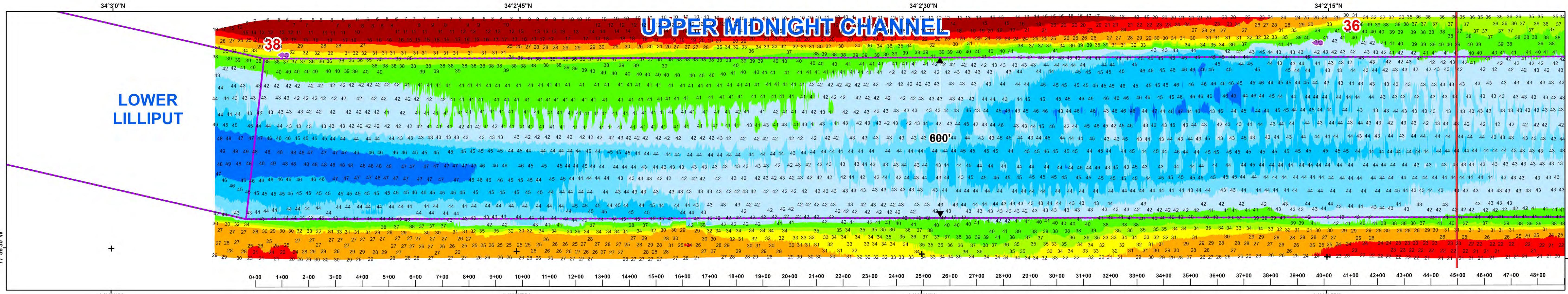
NOT TO SCALE

**Depth In Feet**

20, 25, 30, 32, 35, 38, 42, 44, 45, 47 and Deeper  
20 and Shallower




- Green Light
- Red Light
- Green Daybeacon
- ▲ Red Daybeacon
- ◆ Danger Sign
- Mileboard
- Tide Gage




Matchlines




Navigation Channel

New WH403 Channel Extent









**HYDROGRAPHIC SURVEY**

U.S. ARMY ENGINEER DISTRICT  
CORPS OF ENGINEERS  
WILMINGTON, NORTH CAROLINA

**Wilmington Harbor**

**Upper**  
**Midnight**

**U.S. ARMY ENGINEER DISTRICT  
CORPS OF ENGINEERS  
WILMINGTON, NORTH CAROLINA**

## Wilmington Harbor

# Upper Midnight



*midnight*

A black and white micrograph showing a dense network of root-like structures. A thin blue line is drawn across the image, starting from the left edge and extending diagonally upwards to the right, likely indicating a measurement or a specific line of interest.

Map Date: 30 May 2023

Scale: 1:2,000  
File Name: WH\_14\_UMI\_20230424\_  
Surveyed by: TDM, SRV  
Mapped by: kZopplac

Mapped by: k7pmlac  
Processed by: k7pdpsgd

Survey Date: 24 & 26 April 2023  
Map Date: 03 May 2023

Scale: 1:2,000  
File Name: WH 14 UMI 20230424 CS

Surveyed by: TDM, SRV  
Mapped by: kZenplac

Processed by: k7pdpsgd

200 100 0 200

400



1983-2001 TIDAL EPOCH.

2. PROJECT SURVEYED WITH DISTRICT SURVEY VESSEL " SWART EQUIPMENT AND 28 KHZ SOUNDING EQUIPMENT. ", USING RTK GPS HORIZONTAL P
3. HORIZONTAL DATUM NAD 1983. VERTICAL DATUM M.L.L.W..
4. TIDE GAGE LOCATED AT: MOTSU LIGHT 14  
USE OF TIDE VALUES FOR THIS GAGE ARE RESTRICTED TO QUALITY ASSURANCE PURPOSES FOR VER  
RTK TIDES. THE WILMINGTON DISTRICT WILL ONLY USE STAFF GAGE TIDAL VALUES FOR FINAL MAPPIN  
CALCULATIONS IF RTK GPS IS UNAVAILABLE AT THE TIME OF SURVEY.
5. THIS PROJECT WAS DESIGNED BY THE WILMINGTON DISTRICT OF THE U. S. ARMY CORPS OF ENGINEER  
AND SIGNATURES AND REGISTRATION DESIGNATIONS OF INDIVIDUALS APPEAR ON THESE PROJECT D  
WITHIN THE SCOPE OF THEIR EMPLOYMENT AS REQUIRED BY ER1110-1-8152.
6. THE INFORMATION DEPICTED ON THIS SURVEY MAP REPRESENTS THE RESULTS OF SURVEYS MADE O  
INDICATED AND CAN ONLY BE CONSIDERED AS INDICATING THE GENERAL CONDITIONS EXISTING AT T  
CONDITIONS ARE SUBJECT TO RAPID CHANGE DUE TO SHOALING EVENTS. A PRUDENT MARINER SHO  
EXCLUSIVELY ON THE INFORMATION PROVIDED HERE. REQUIRED BY 33 CFR 209.325
7. NAVIGATION AIDS LOCATED WITH DISTRICT SURVEY VESSEL, ACCURACY +/- 3 METERS.

**TYPICAL SECTION**

M.L.L.W.

-42' DEPTH

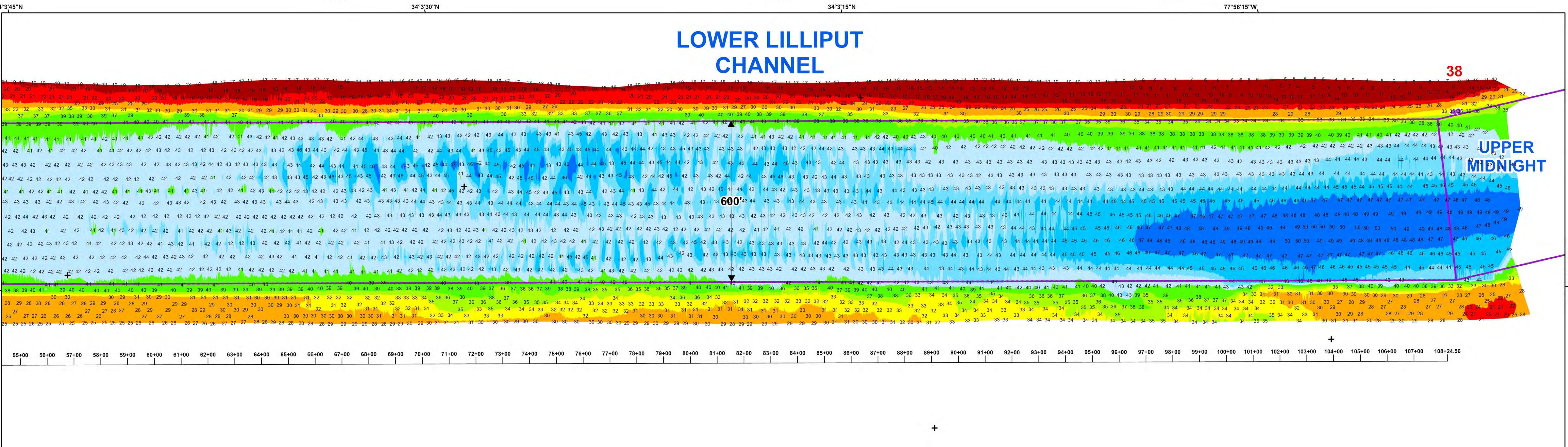
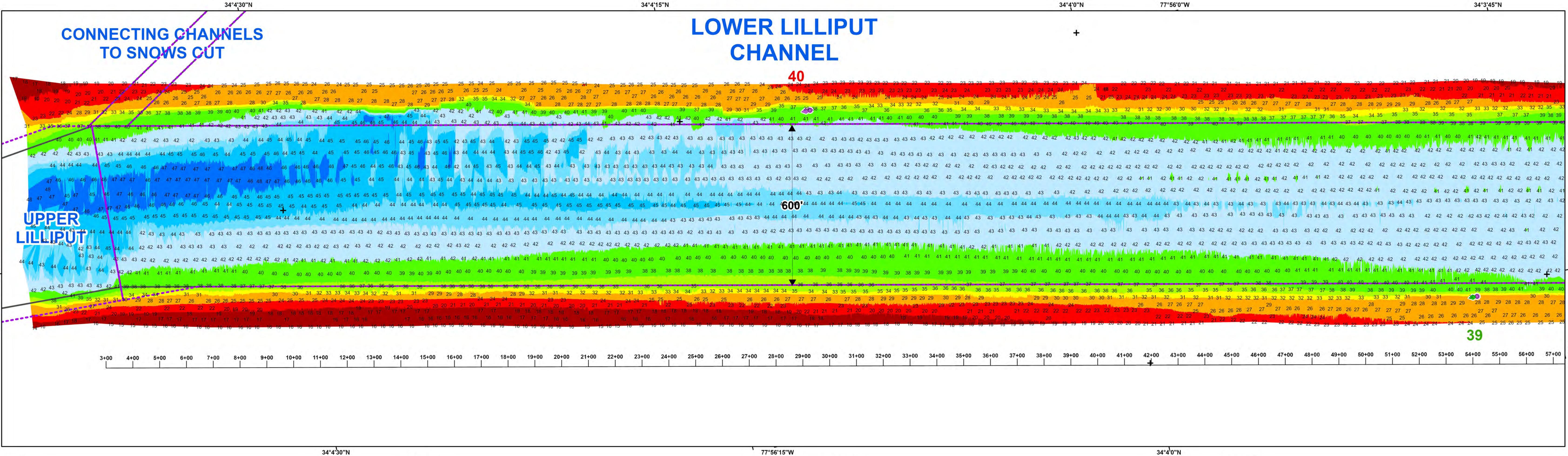
PROJECT

1 3

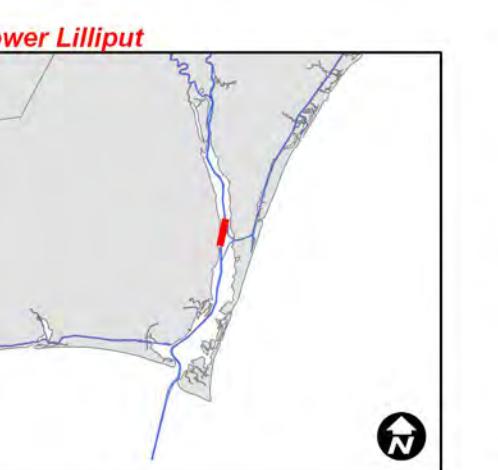
600'

NOT TO SCALE

- Can
- Nun
- Green Lighted Buoy
- Red Lighted Buoy
- Junction Marker



Depth In Feet

20, 25, 32, 35, 38, 42, 44, 45, 47 and Deeper


20 and Shallower

Navigation Channel

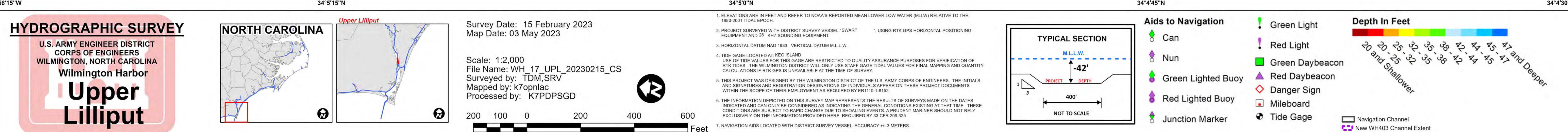
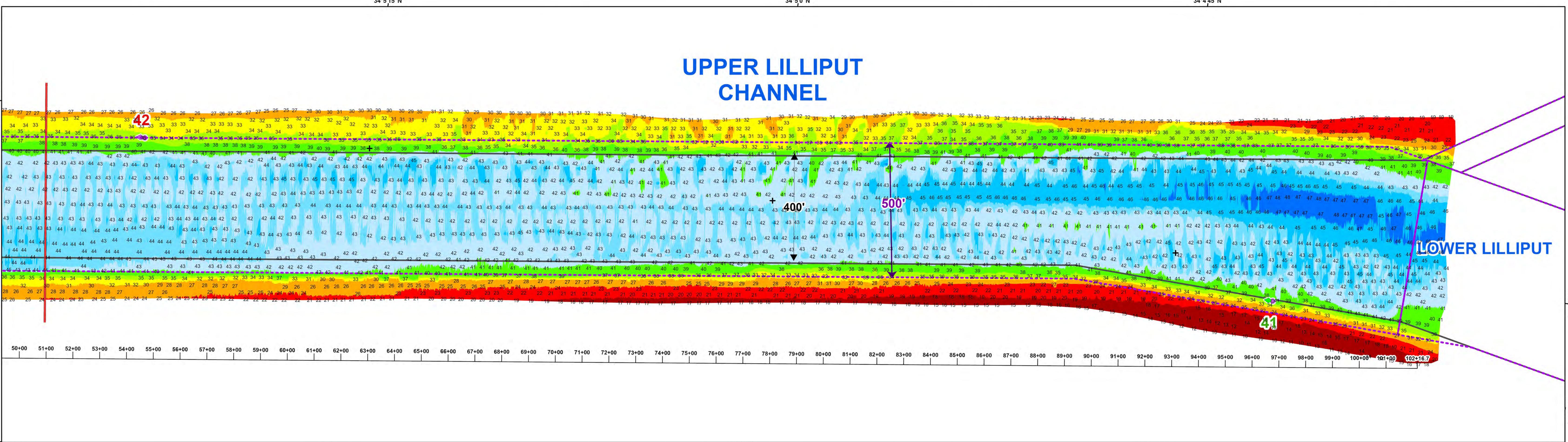
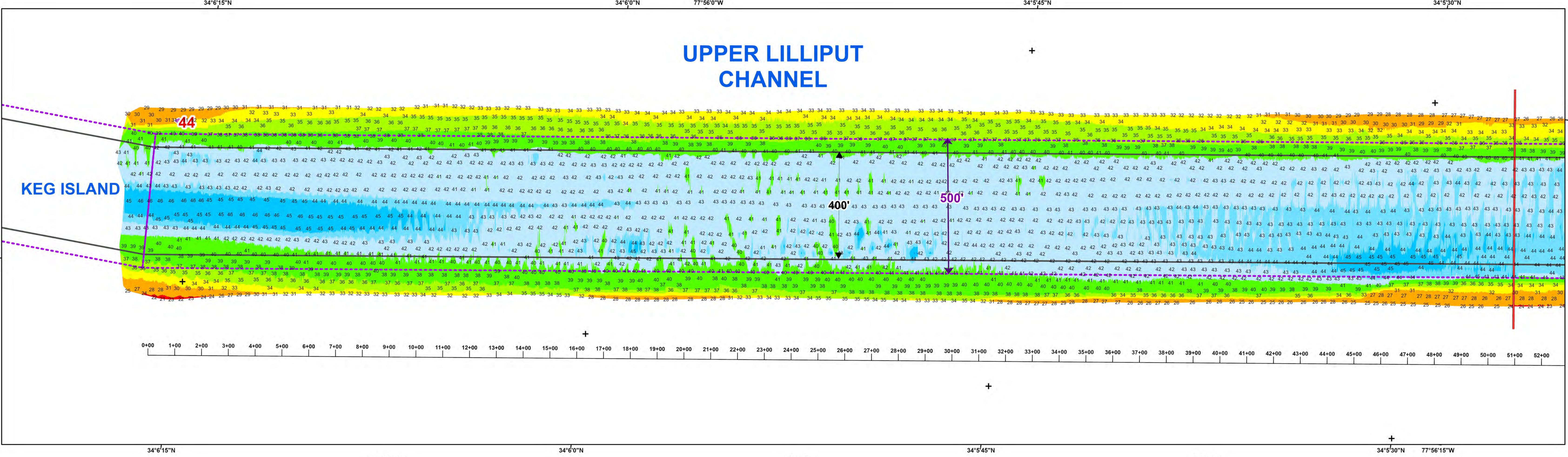
New WH403 Channel Extent

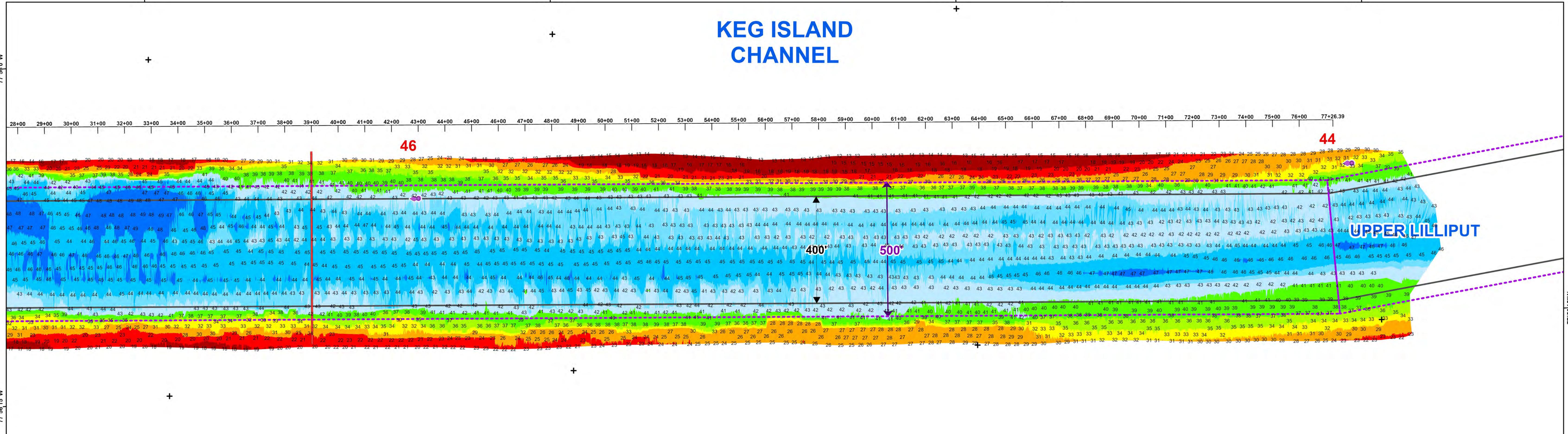
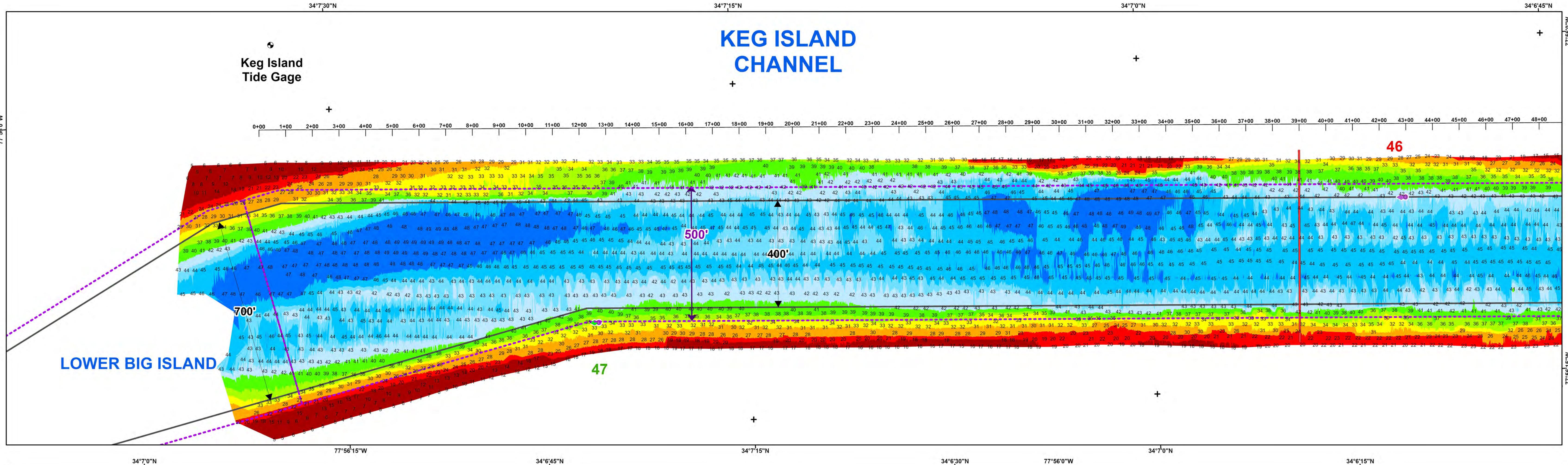


**HYDROGRAPHIC SURVEY**  
U.S. ARMY ENGINEER DISTRICT  
CORPS OF ENGINEERS  
WILMINGTON, NORTH CAROLINA  
Wilmington Harbor  
**Lower Lilliput**



Survey Date: 15-16 March 2023  
Map Date: 03 May 2023  
Scale: 1:2,000  
File Name: WH\_15\_LOL\_20230315\_CS  
Surveyed by: LMT.SRV  
Mapped by: k7opnplac  
Processed by: K7OPNDJM




Feet

200 100 0 200 400 600

Feet

300 200 1





**HYDROGRAPHIC SURVEY**

U. S. ARMY ENGINEER DISTRICT  
CORPS OF ENGINEERS  
WILMINGTON, NORTH CAROLINA

Wilmington Harbor

**Keg  
Island**

A map of North Carolina showing county boundaries and major rivers. A red box highlights the area around the Cape Fear River, and a black circle with a white 'N' indicates the north arrow.

Survey Date: 16 February 2023  
Map Date: 03 May 2023  
  
Scale: 1:2,000  
File Name: WH\_18\_KEG\_20230216\_CS  
Surveyed by: LMT,DJD  
Mapped by: k7opnlac  
Processed by: K7OPNDJM  
  
200 100 0 200

6  
  
400

600

EXCLUSIV

MOST UP TO DATE INFORMATION PLEASE CHECK OUR WEBSITE AT: [WWW.SAW.USACE.ARMY.MIL](http://WWW.SAW.USACE.ARMY.MIL)

**TYPICAL SECTION**

M.L.L.W.

-42'

PROJECT

DEPTH

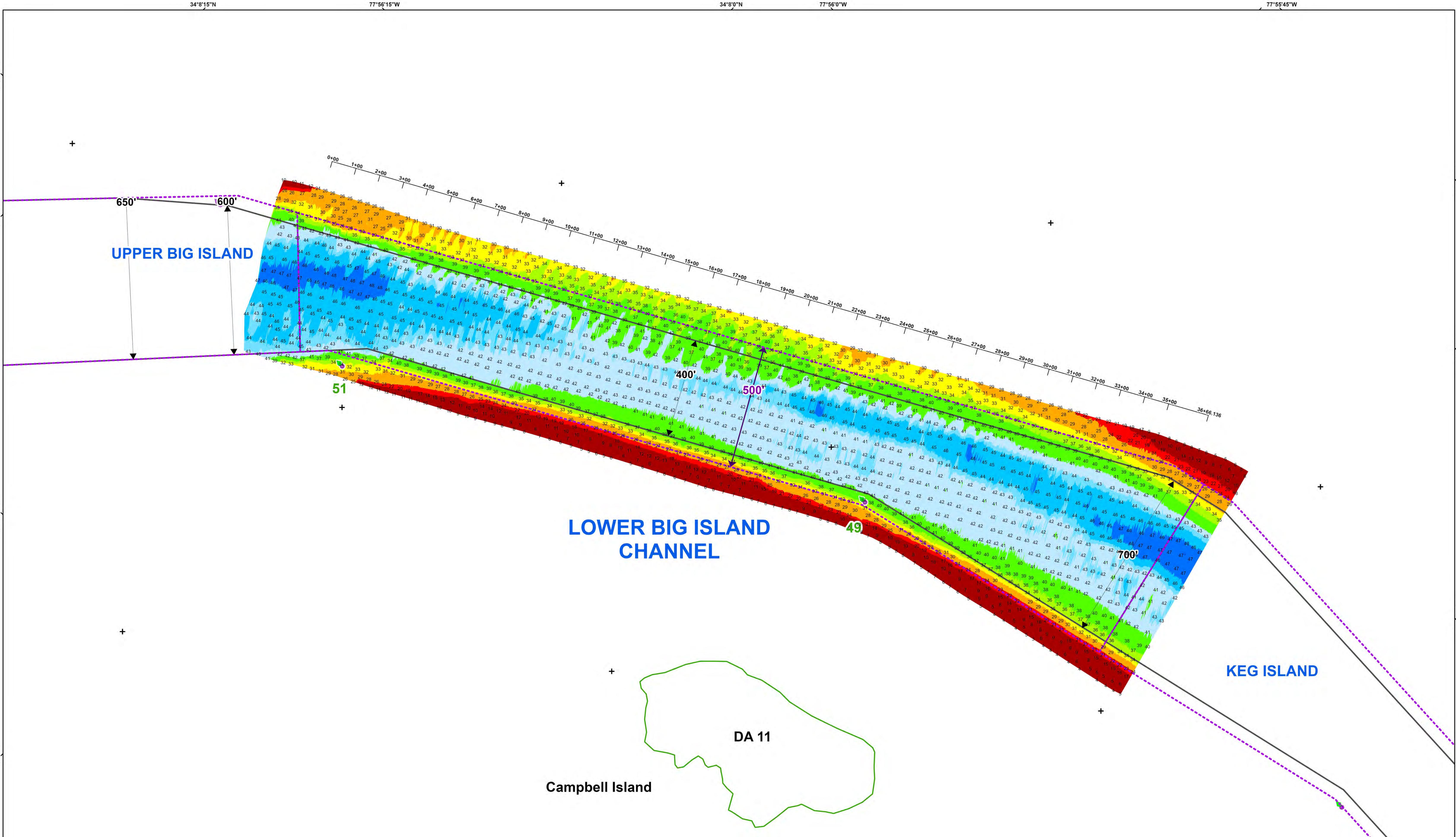
1

3

400'

NOT TO SCALE

- Can 
- Nun 
- Green Lighted Buoy 
- Red Lighted Buoy 
- Junction Marker 


Depth In Feet

20 and Shallower

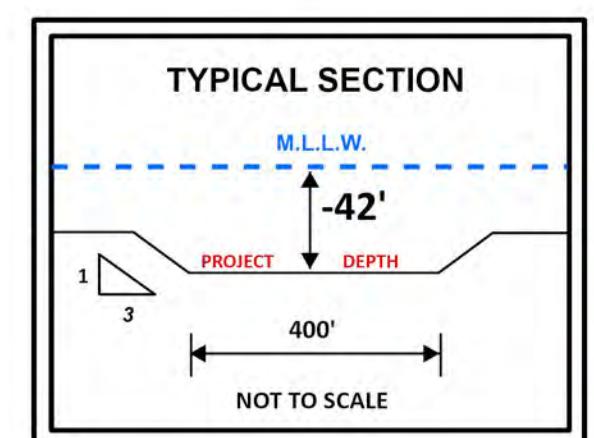
20 and Deeper

Navigation Channel

New WH403 Channel Extent



## HYDROGRAPHIC SURVEY

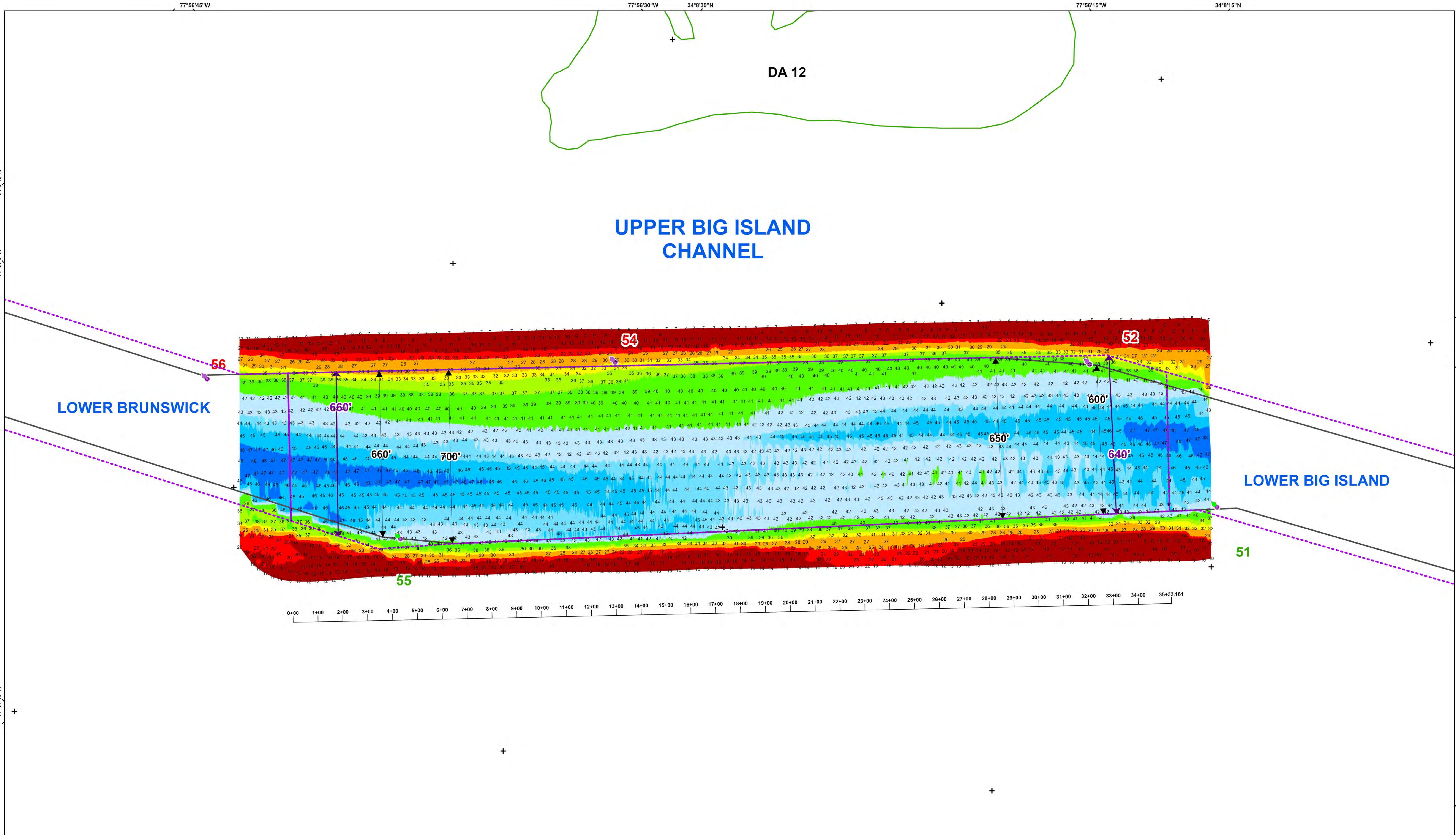

U.S. ARMY ENGINEER DISTRICT  
CORPS OF ENGINEERS  
WILMINGTON, NORTH CAROLINA  
Wilmington Harbor  
**Lower Big Island**



Survey Date: 01 May 2023  
Map Date: 03 May 2023  
Imagery Date: 28 January 2023  
© 2023 Maxar Technologies  
Scale: 1:2,000  
File Name: WH\_19\_LBI\_20230501\_CS  
Surveyed by: TDM,JCC,SRV  
Mapped by: k7opnlac  
Processed by: k7opnlac

200 100 0 200 400 600  
Feet

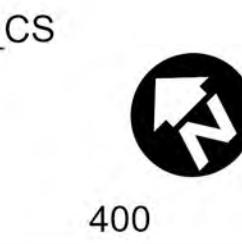
1. ELEVATIONS ARE IN FEET AND REFER TO NOAA'S REPORTED MEAN LOWER LOW WATER (MLLW) RELATIVE TO THE 1983-2001 TIDE EPOCH.  
2. PROJECT SURVEYED WITH DISTRICT SURVEY VESSEL "SWART" EQUIPMENT AND 3KHZ SOUNDING EQUIPMENT.  
3. HORIZONTAL DATUM NAD 1983. VERTICAL DATUM M.L.L.W.  
4. TIDE GAGE LOCATED AT LIGHT 14 MOTUS. USE TIDE VALUES FOR THIS GAGE ARE RESTRICTED TO QUALITY ASSURANCE PURPOSES FOR VERIFICATION OF RTK TIDES. THIS PROJECT WILL ONLY USE STAFF GAGE TIDAL VALUES FOR FINAL MAPPING AND QUANTITY CALCULATIONS IF RTK GPS IS UNAVAILABLE AT THE TIME OF SURVEY.  
5. THIS PROJECT WAS DESIGNED BY THE WILMINGTON DISTRICT OF THE U.S. ARMY CORPS OF ENGINEERS. THE INITIALS AND SIGNATURES AND REGISTRATION DESIGNATIONS OF INDIVIDUALS APPEAR ON THESE PROJECT DOCUMENTS WITHIN THE SCOPE OF THEIR EMPLOYMENTS AS REQUIRED BY ER1101-1-8152.  
6. THE INFORMATION DEPICTED ON THIS SURVEY MAP REPRESENTS THE RESULTS OF SURVEYS MADE ON THE DATES INDICATED AND CAN ONLY BE CONSIDERED AS INDICATING THE GENERAL CONDITIONS EXISTING AT THAT TIME. THESE CONDITIONS ARE SUBJECT TO RAPID CHANGE DUE TO SHOALING EVENTS. A PRUDENT MARINER SHOULD NOT RELY EXCLUSIVELY ON THE INFORMATION PROVIDED HERE, REQUIRED BY 33 CFR 209.52.  
7. NAVIGATION AIDS LOCATED WITH DISTRICT SURVEY VESSEL ACCURACY +/- 3 METERS.  
8. FOR THE MOST UP TO DATE INFORMATION PLEASE CHECK OUR WEBSITE AT: [WWW.SAU.SACE.ARMY.MIL](http://WWW.SAU.SACE.ARMY.MIL)




### Aids to Navigation

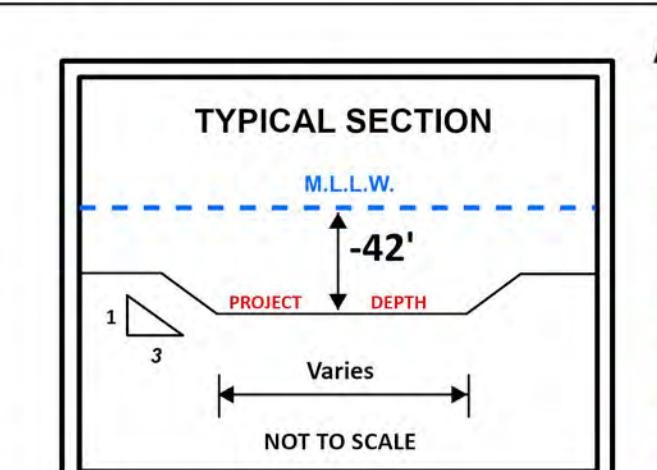
- Green Light
- Red Light
- Nun
- Green Daybeacon
- Red Daybeacon
- Danger Sign
- Mileboard
- Junction Marker

Depth In Feet  
20 and Shallower


Navigation Channel  
Placement Areas  
New WH403 Channel Extent



**HYDROGRAPHIC SURVEY**  
U.S. ARMY ENGINEER DISTRICT  
CORPS OF ENGINEERS  
WILMINGTON, NORTH CAROLINA  
Wilmington Harbor  
**Upper Big Island**



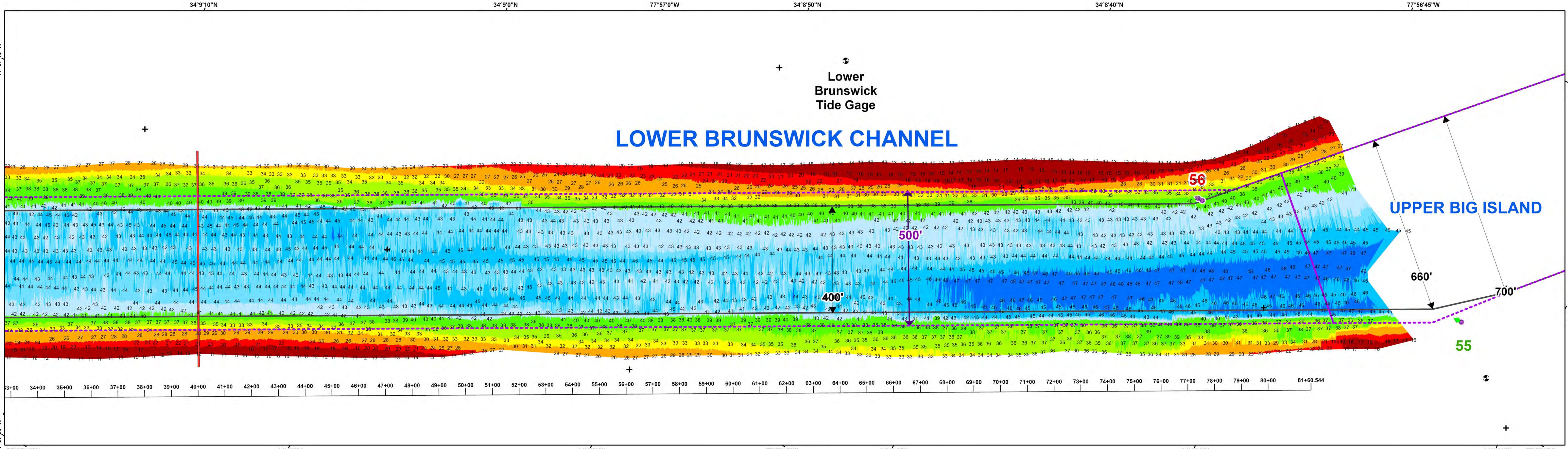
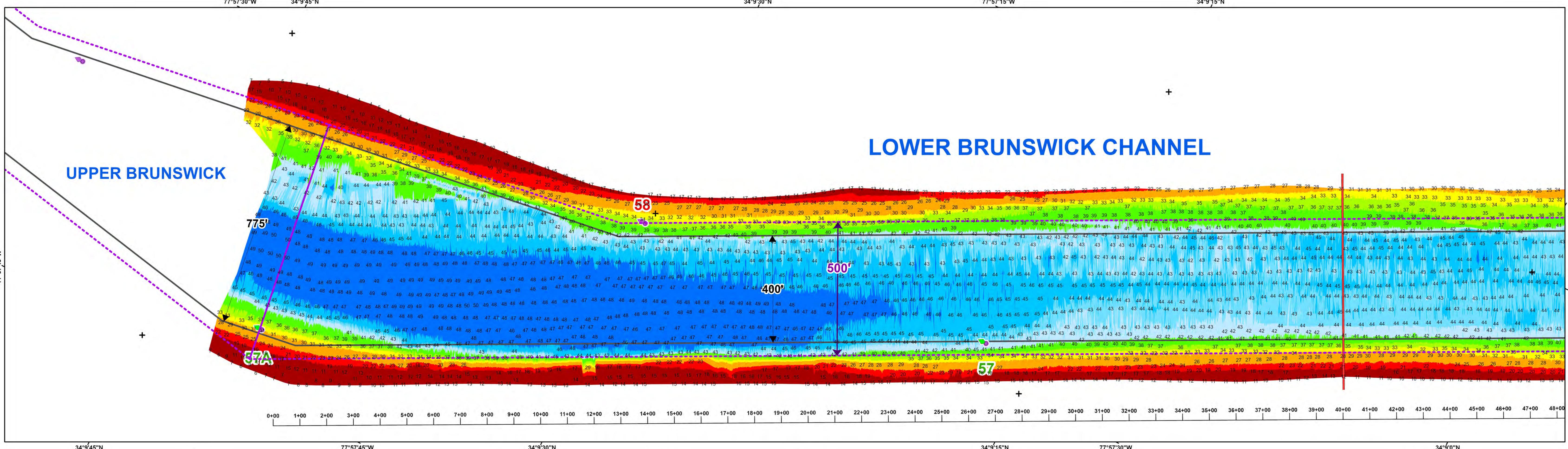

Survey Date: 13 April 2023  
Map Date: 03 May 2023  
Imagery Date: 28 January 2023  
© 2023 Maxar Technologies  
Scale: 1:2,000  
File Name: WH\_20\_UBI\_20230413\_CS  
Surveyed by: TDM,DJD,SRV  
Mapped by: k7opnlac  
Processed by: k7opnlac



200 100 0 200 400 600  
Feet

1. ELEVATIONS ARE IN FEET AND REFER TO NOAA'S REPORTED MEAN LOWER LOW WATER (MLLW) RELATIVE TO THE 1983-2001 TIDE EPOCH.  
2. PROJECT SURVEYED WITH DISTRICT SURVEY VESSEL "SWART" EQUIPMENT AND 20 kHz SOUNDING EQUIPMENT.  
3. HORIZONTAL DATUM NAD 1983. VERTICAL DATUM M.L.L.W.  
4. TIDE GAGE LOCATED AT KEG ISLAND. USE TIDE VALUES FOR THIS GAGE ARE RESTRICTED TO QUALITY ASSURANCE PURPOSES FOR VERIFICATION OF RTK GPS. THIS PROJECT WILL ONLY USE STAFF GAGE TIDAL VALUES FOR FINAL MAPPING AND QUANTITY CALCULATIONS IF RTK GPS IS UNAVAILABLE AT THE TIME OF SURVEY.  
5. THIS PROJECT WAS DESIGNED BY THE WILMINGTON DISTRICT OF THE U.S. ARMY CORPS OF ENGINEERS. THE INITIALS AND SIGNATURES AND REGISTRATION DESIGNATIONS OF INDIVIDUALS APPEAR ON THESE PROJECT DOCUMENTS WITHIN THE SCOPE OF THEIR EMPLOYMENTS AS REQUIRED BY ER1101-1-8152.  
6. THE INFORMATION DEPICTED ON THIS SURVEY MAP REPRESENTS THE RESULTS OF SURVEYS MADE ON THE DATES INDICATED AND CAN ONLY BE CONSIDERED AS INDICATING THE GENERAL CONDITIONS EXISTING AT THAT TIME. THESE CONDITIONS ARE SUBJECT TO RAPID CHANGE DUE TO SHOALING EVENTS. A PRUDENT MARINER SHOULD NOT RELY EXCLUSIVELY ON THE INFORMATION PROVIDED HERE. REQUIRED BY 33 CFR 209.353  
7. NAVIGATION AIDS LOCATED WITH DISTRICT SURVEY VESSEL ACCURACY +/- 3 METERS.  
8. FOR THE MOST UP TO DATE INFORMATION PLEASE CHECK OUR WEBSITE AT [WWW.SAU.SACE.ARMY.MIL](http://WWW.SAU.SACE.ARMY.MIL)

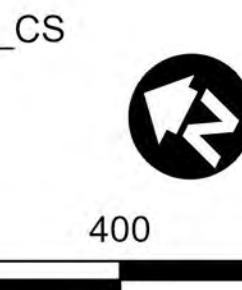




**Aids to Navigation**

- Green Light
- Red Light
- Nun
- Green Daybeacon
- Red Daybeacon
- Danger Sign
- Mileboard
- Junction Marker

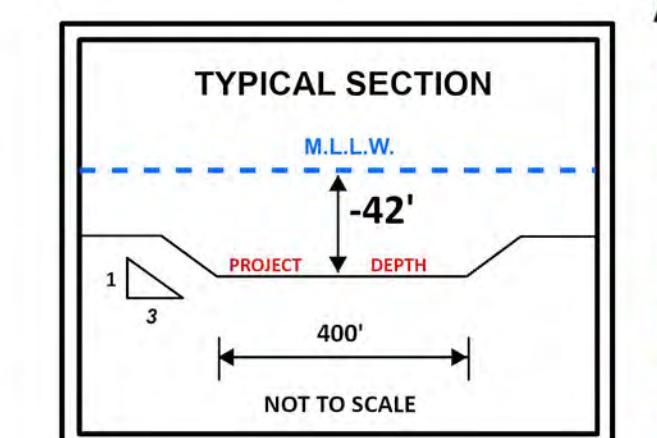
**Depth In Feet**

20' 25' 30' 35' 40' 45' 47' and Deeper  
20' and Shallower


- Navigation Channel
- Placement Areas
- New WH03 Channel Extent



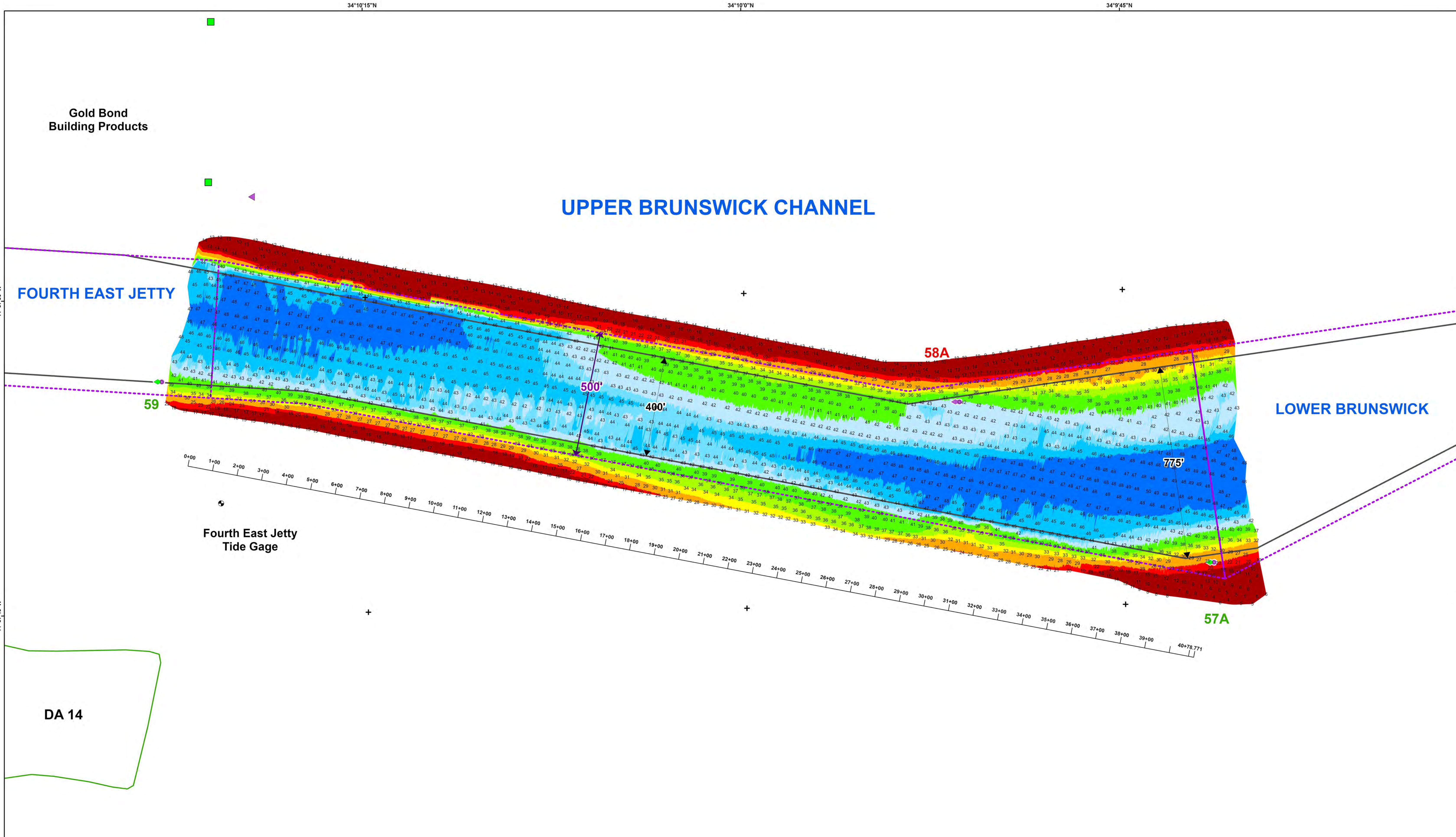
**HYDROGRAPHIC SURVEY**  
U.S. ARMY ENGINEER DISTRICT  
CORPS OF ENGINEERS  
WILMINGTON, NORTH CAROLINA  
Wilmington Harbor  
**Lower Brunswick**




Survey Date: 01 May 2023  
Map Date: 03 May 2023  
Scale: 1:2,000  
File Name: WH\_21\_LBR\_20230501\_CS  
Surveyed by: WJC,DJD  
Mapped by: k7opnlac  
Processed by: k7opnlac



Feet


1. ELEVATIONS ARE IN FEET AND REFER TO NOAA'S REPORTED MEAN LOWER LOW WATER (MLLW) RELATIVE TO THE 1983-2001 TIDE EPOCH.  
2. PROJECT SURVEYED WITH DISTRICT SURVEY VESSEL "SANDERSON", USING RTK GPS HORIZONTAL POSITIONING EQUIPMENT AND 24 kHz SOUNDING EQUIPMENT.  
3. HORIZONTAL DATUM NAD 1983, VERTICAL DATUM M.L.L.W.  
4. TIDE GAGE LOCATED AT LOWER BRUNSWICK. USE TIDE VALUES FOR THIS GAGE ONLY FOR QUALITY ASSURANCE PURPOSES FOR VERIFICATION OF RTK GPS. THIS GAGE IS NOT THE ONLY USE STAFF GAGE TIDAL VALUES FOR FINAL MAPPING AND QUANTITY CALCULATIONS IF RTK GPS IS UNAVAILABLE AT THE TIME OF SURVEY.  
5. THIS PROJECT WAS DESIGNED BY THE WILMINGTON DISTRICT OF THE U.S. ARMY CORPS OF ENGINEERS. THE INITIALS AND SIGNATURES AND REGISTRATION DESIGNATIONS OF INDIVIDUALS APPEAR ON THESE PROJECT DOCUMENTS WITHIN THE SCOPE OF THEIR EMPLOYMENTS AS REQUIRED BY ER110-1-815.  
6. THE INFORMATION DEPICTED ON THIS SURVEY MAP REPRESENTS THE RESULTS OF SURVEYS MADE ON THE DATES INDICATED AND CAN ONLY BE CONSIDERED AS INDICATING THE GENERAL CONDITIONS EXISTING AT THAT TIME. THESE CONDITIONS ARE SUBJECT TO RAPID CHANGE DUE TO SHOALING EVENTS. A PRUDENT MARINER SHOULD NOT RELY EXCLUSIVELY ON THE INFORMATION PROVIDED HERE. REQUIRED BY 33 CFR 209.52.  
7. NAVIGATION AIDS LOCATED WITH DISTRICT SURVEY VESSEL ACCURACY +/- 3 METERS.  
8. FOR THE MOST UP TO DATE INFORMATION PLEASE CHECK OUR WEBSITE AT [WWW.SAU.SACE.ARMY.MIL](http://WWW.SAU.SACE.ARMY.MIL)

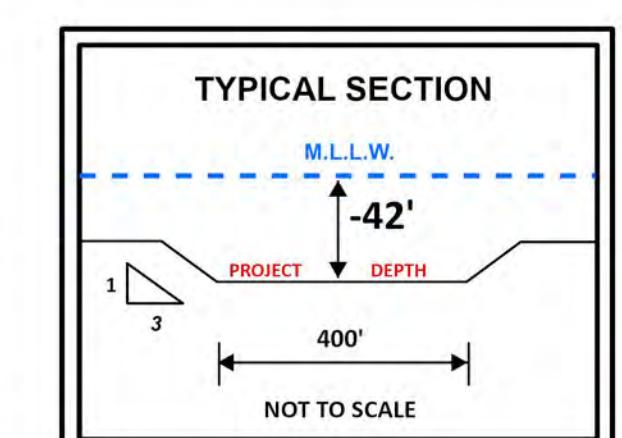


**Aids to Navigation**

- Green Light
- Red Light
- Nun
- Green Daybeacon
- Red Daybeacon
- Danger Sign
- Mileboard
- Junction Marker

**Depth In Feet**  
20' 25' 30' 35' 40' 45' 50' 55' and Deeper  
20' 25' 30' 35' 40' 45' 50' 55' and Deeper  
Navigation Channel  
New WH403 Channel Extent




**HYDROGRAPHIC SURVEY**  
U.S. ARMY ENGINEER DISTRICT  
CORPS OF ENGINEERS  
WILMINGTON, NORTH CAROLINA  
Wilmington Harbor  
**Upper Brunswick**

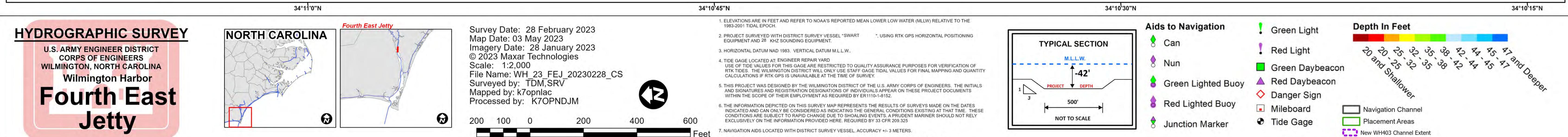
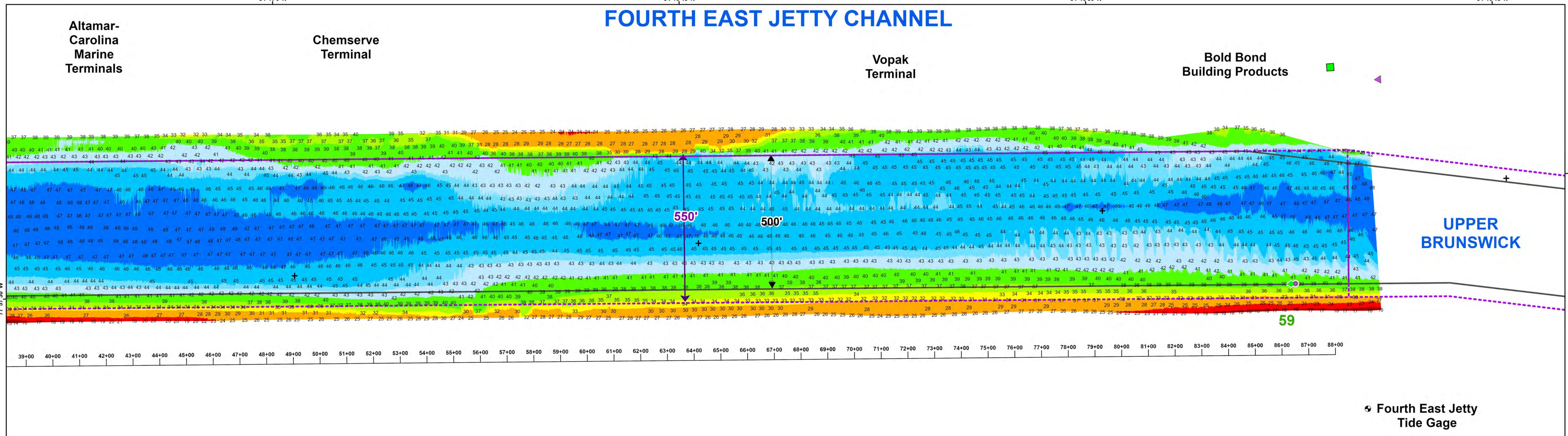
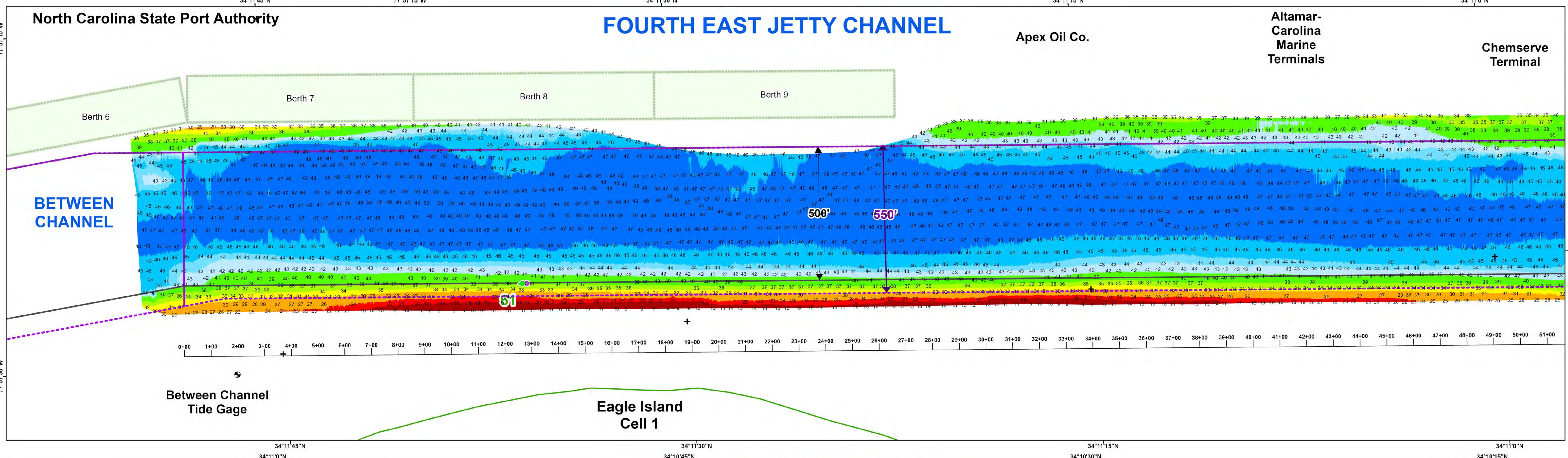


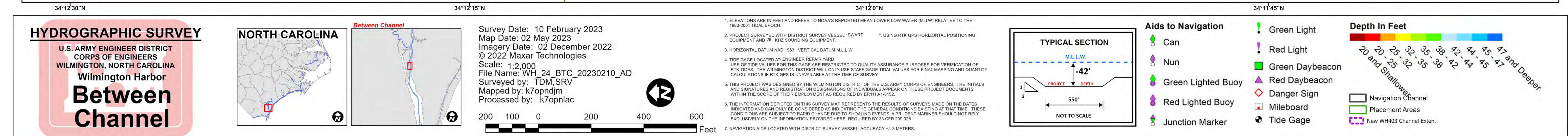
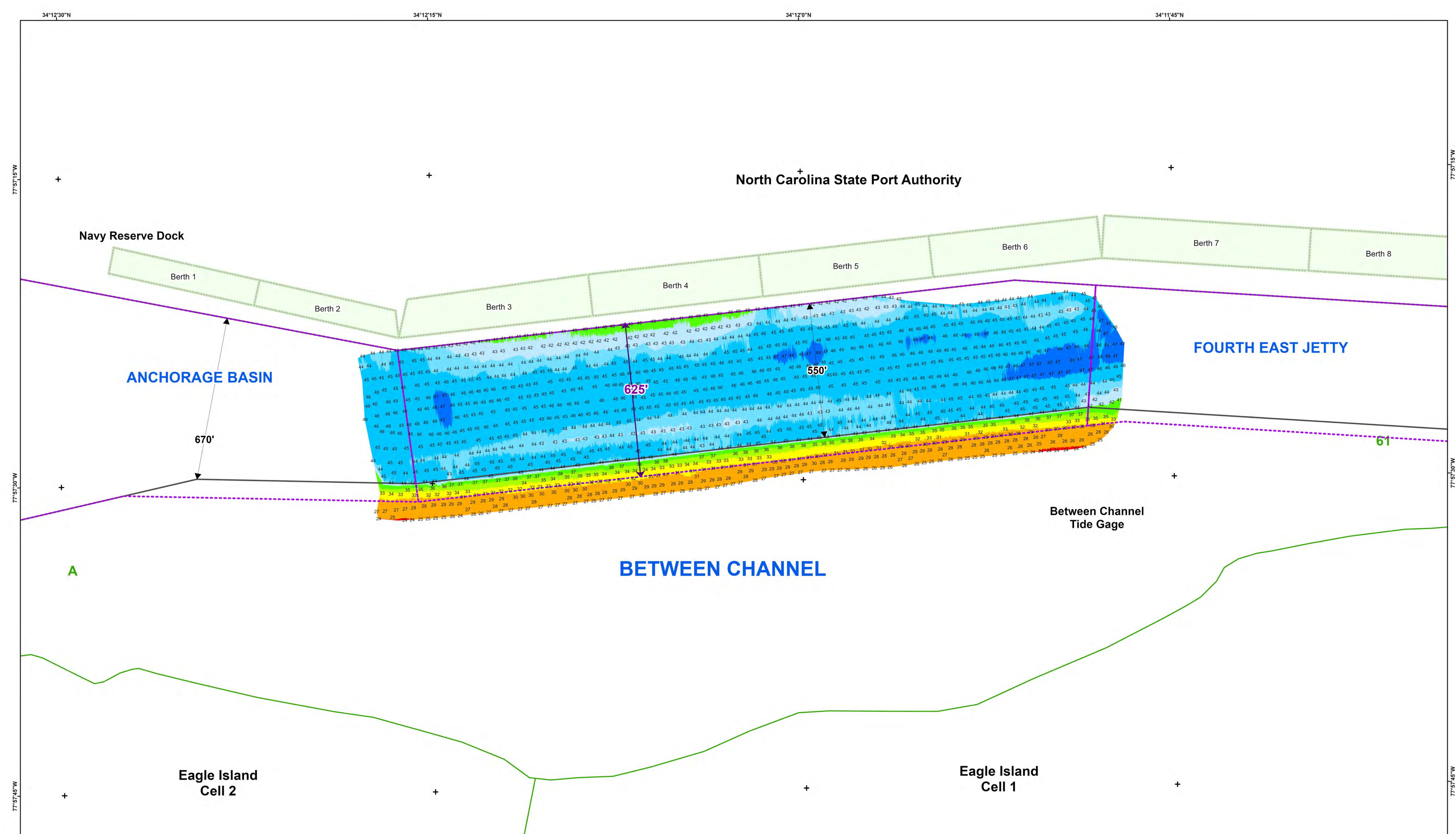
Survey Date: 06 March 2023  
Map Date: 03 May 2023  
Imagery Date: 28 January 2023  
© 2023 Maxar Technologies  
Scale: 1:2,000  
File Name: WH\_22\_UBR\_20230306\_CS  
Surveyed by: WJC, SRV  
Mapped by: k7opnplac  
Processed by: K7OPNDJM

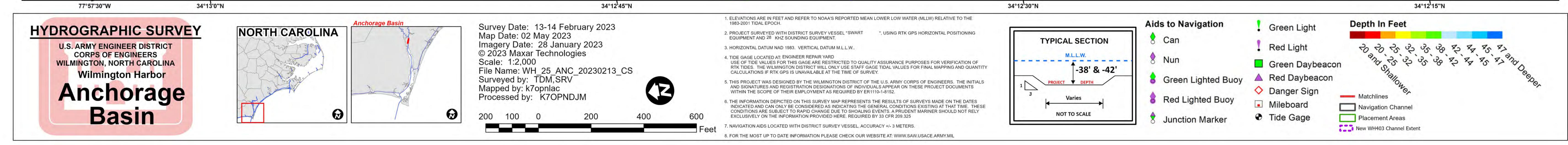
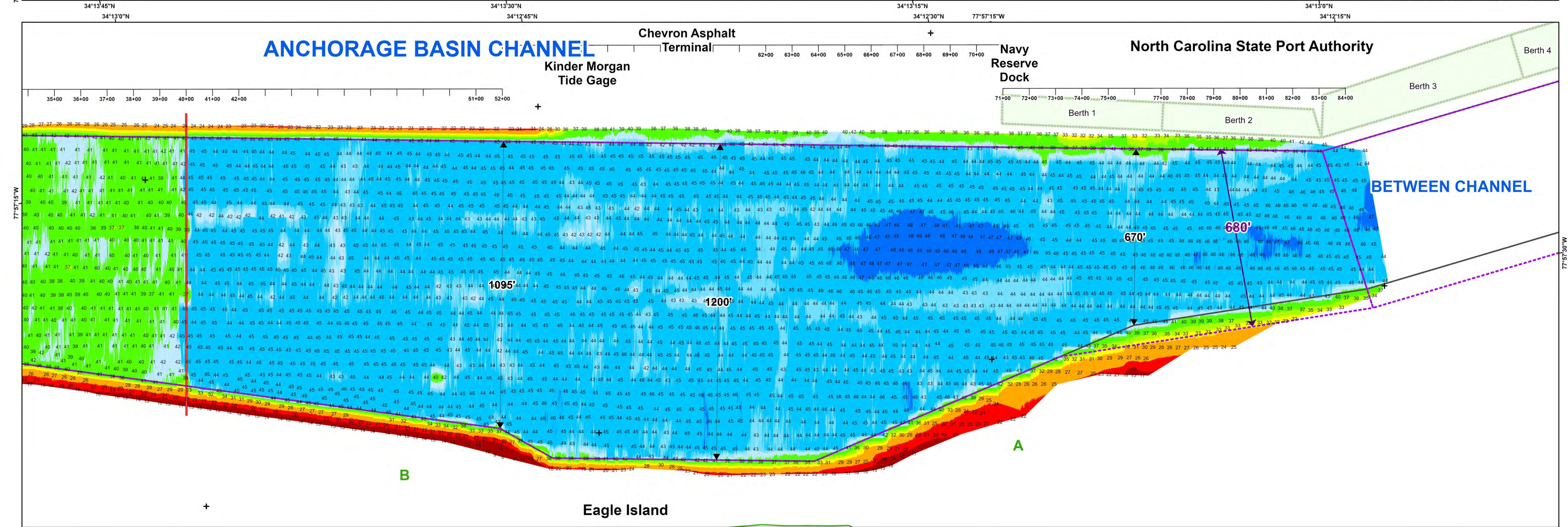
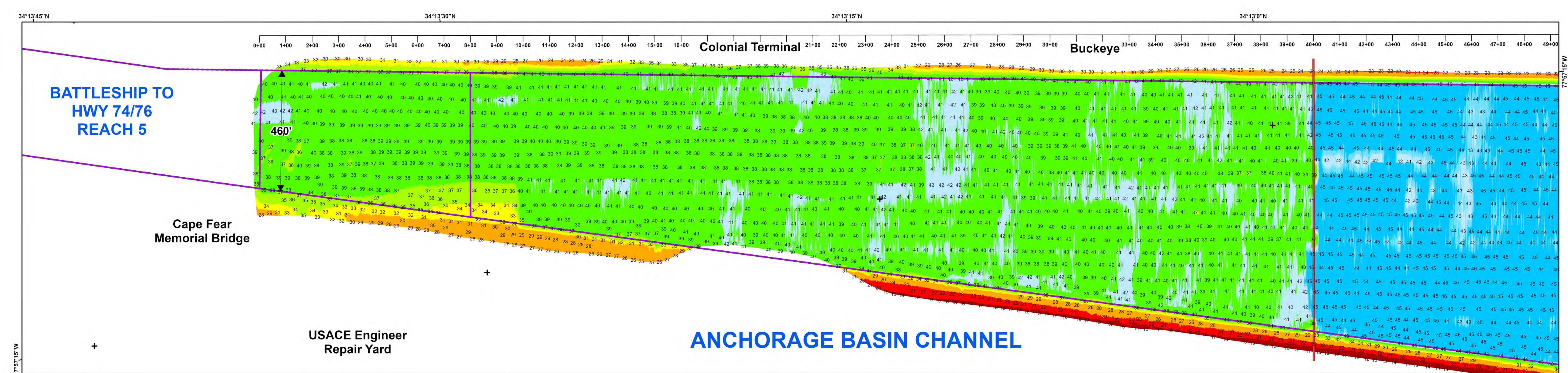
200 100 0 200 400 600  
Feet

1. ELEVATIONS ARE IN FEET AND REFER TO NOAA'S REPORTED MEAN LOWER LOW WATER (MLLW) RELATIVE TO THE 1983-2001 TIDE EPOCH.  
2. PROJECT SURVEYED WITH DISTRICT SURVEY VESSEL "SWART" EQUIPMENT AND 23 kHz SOUNDING EQUIPMENT.  
3. HORIZONTAL DATUM NAD 1983. VERTICAL DATUM M.L.L.W.  
4. TIDE GAGE LOCATED AT 4TH EAST JETTY. USE TIDE VALUES FOR THIS GAGE FOR QUALITY ASSURANCE PURPOSES FOR VERIFICATION OF RTK GPS. THIS PROJECT WILL ONLY USE STAFF GAGE TIDAL VALUES FOR FINAL MAPPING AND QUANTITY CALCULATIONS IF RTK GPS IS UNAVAILABLE AT THE TIME OF SURVEY.  
5. THIS PROJECT WAS DESIGNED BY THE WILMINGTON DISTRICT OF THE U.S. ARMY CORPS OF ENGINEERS. THE INITIALS AND SIGNATURES AND REGISTRATION DESIGNATIONS OF INDIVIDUALS APPEAR ON THESE PROJECT DOCUMENTS WITHIN THE SCOPE OF THEIR EMPLOYMENTS AS REQUIRED BY ER11010-1-0150.  
6. THE INFORMATION DEPICTED ON THIS SURVEY MAP REPRESENTS THE RESULTS OF SURVEYS MADE ON THE DATES INDICATED AND CAN ONLY BE CONSIDERED AS INDICATING THE GENERAL CONDITIONS EXISTING AT THAT TIME. THESE CONDITIONS ARE SUBJECT TO RAPID CHANGE DUE TO SHOALING EVENTS. A PRUDENT MARINER SHOULD NOT RELY EXCLUSIVELY ON THE INFORMATION PROVIDED HERE. REQUIRED BY 33 CFR 209.363  
7. NAVIGATION AIDS LOCATED WITH DISTRICT SURVEY VESSEL ACCURACY +/- 3 METERS.  
8. FOR THE MOST UP TO DATE INFORMATION PLEASE CHECK OUR WEBSITE AT [WWW.SAU.SACE.ARMY.MIL](http://WWW.SAU.SACE.ARMY.MIL)






**Aids to Navigation**



- Green Light
- Red Light
- Nun
- Green Daybeacon
- Red Daybeacon
- Danger Sign
- Mileboard
- Junction Marker




**Depth In Feet**

20 25 30 35 40 45 50 and Deeper  
20 and Shallower

- Navigation Channel
- Placement Areas
- New WH403 Channel Extent









US Army Corps  
of Engineers  
Wilmington District®

# **Wilmington Harbor 403 Letter Report**

**Wilmington, North Carolina**

## **Appendix A**

### **Attachment 2: Hydrographic Survey**

### **Existing Vs. New**

01/24/2025

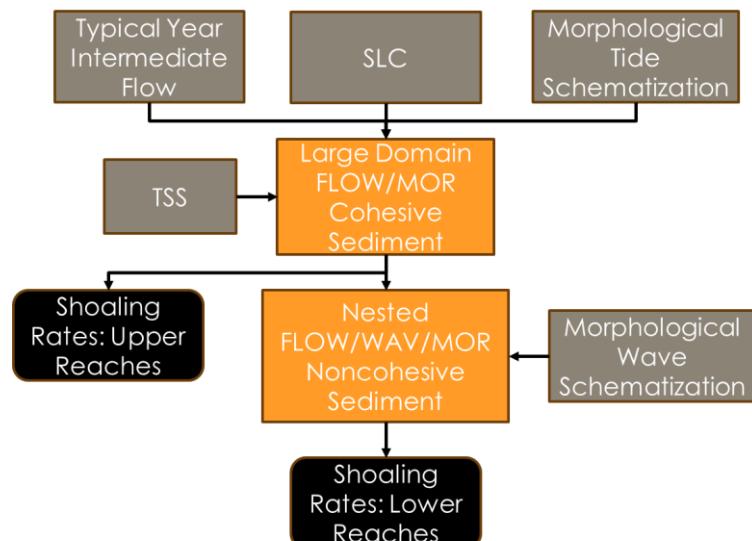
Prepared by U.S. Army Corps of Engineers  
Wilmington District  
69 Darlington Avenue  
Wilmington, North Carolina 28403

---

To: Wilmington District From: Stantec

U.S. Army Corps of Engineers

Project/File: 177311813 Date: January 24, 2025


**Reference: Task 11 Channel Morphology Study**

## 1 Overview

Stantec used the coupled FLOW/MOR/WAVE modules to simulate morphological changes due to both suspended and bed load sediment transport for three channel deepening alternatives: NAA, AA1, and AA2. This approach incorporated riverine (flow) and coastal (tidal and wave) processes and evaluated the impact of multiple sea level change (SLC) scenarios: No SLC, SLC1 (0.5 ft), SLC2 (1.28 ft), and SLC3 (3.77 ft). The results were used to develop shoaling rates, both with and without project, along each reach of the existing and proposed navigation channel.

## 2 Study Approach

Figure 1 provides an overview of the channel morphology study approach showing the interaction between Delft3D modules, boundary conditions (e.g. Total Suspended Solids (TSS) values) and model outputs. Each component is described further in the sections that follow.



*Figure 1. Flow diagram of the morphological study approach illustrating the interaction between boundary conditions (gray), Delft3D modules (orange), and outputs (black).*

## 2.1 Model Domains

Building on the methodology used in the NCSPA Section 203 (2020) study, the channel morphology impact assessment for the current study included two model domains (Figure 2).




Figure 2. Map showing model domains used to assess channel morphology impacts.

### 2.1.1 Large domain FLOW/MOR model

To simulate the transport of cohesive sediment (mud) in the upper reaches of the Cape Fear River estuary and anchorage basin, a larger domain FLOW/MOR model was established (Figure 2). This model simulated the movement of suspended sediment and the accumulation of mud, driven by river flow and tides. Since waves have minimal impact on sediment transport in this part of the estuary, they were not included in the simulation. The grid was developed with a horizontal resolution of up to 5 meters and included 16 vertically stretched sigma layers. The bathymetries used were the same as those applied during Task 8.

### 2.1.2 Nested domain coupled FLOW/WAVE/MOR

To simulate noncohesive (sand) sediment transport at the inlet, a nested domain coupled flow-wave-morphology model was used. To account for wave-driven sediment transport in the lower reaches of the navigation channel near the inlets, a smaller domain model was nested within the larger, existing domain flow model. The results from the large domain flow model served as boundary conditions for the nested domain model in a one-way “offline” nested approach, where the large domain model was completed first, and the relevant boundary data was then provided to the nested domain. The nested model grid was developed with a horizontal resolution of up to 10 meters and extended from the northern limit of the Smith Island Reach to beyond the seaward limit of Bald Head Shoal segment 2, similar to the approach used in Task 9. Since vertical flow variations are anticipated to have a minor

impact on noncohesive sediment transport at the coast compared to horizontal flow variations, the nested model was configured in depth-averaged mode (Lesser, Roelvink, et al. 2004). This assumption is commonly applied in coastal environments where the influence of vertical stratification is minimal, particularly in well-mixed systems with strong tidal and wave-driven currents that dominate sediment transport processes.

Following the methodology developed in the NCSPA Section 203 (2020) study, the depth-averaged approach provides a computationally efficient means of capturing the key hydrodynamic and sediment transport processes without sacrificing accuracy in areas where vertical gradients are expected to be negligible. Additionally, observational data and previous studies in similar environments indicate that depth-averaged models sufficiently capture the primary transport pathways and depositional patterns in regions with relatively shallow depths and dominant lateral flow influences.

## 2.2 Model Boundary Conditions

### 2.2.1 Discharge

The channel morphology study was focused on the impacts of the channel deepening alternatives and SLC on yearly shoaling rates. Therefore, a typical year and intermediate flow conditions were assumed for all simulations. In line with the approach taken during Task 8, constant discharge rates of 89.55 m<sup>3</sup>/s, 13.55 m<sup>3</sup>/s and 11.05 m<sup>3</sup>/s were applied at the Cape Fear River (CFR), Black River (BR) and Northeast Cape Fear River (NCFR) model boundaries, respectively. The intermediate flow condition, reflecting the median discharge rates for a typical year, is considered representative of the entire year when averaged annually.

### 2.2.2 Total Suspended Solids at Upstream Boundary of Large Domain Model

For this study, the model input values for TSS, Total Suspended Solids, were derived using the most recent measurements available at three STORET stations (National Water Quality Monitoring Council, United States Geological Survey (USGS), Environmental Protection Agency (EPA) 2021). Table 1 provides details for each measurement station.

Table 1. Summary of STORET stations used for Discharge (Q)- total suspended solids (TSS) analysis.

| STORET Station Code | Station Name                                        | Latitude | Longitude | Date Range  |
|---------------------|-----------------------------------------------------|----------|-----------|-------------|
| B8360000            | Cape Fear River at NC 11 nr East Arcadia            | 34.3969  | -78.2675  | 1998 - 2013 |
| B9000000            | Black River above Thorofare                         | 34.4312  | -78.1441  |             |
| B9580000            | Northeast Cape Fear River at US 117 at Castle Hayne | 34.3637  | -77.8965  |             |

In a similar approach to the NCSPA Section 203 report, the synchronous measurements of TSS and discharge (Q) were first analyzed to assess correlation at the gauged locations at the model's upstream boundaries. A moderate linear correlation was found at CFR defined by the equation below,

$$TSS[mg/L] = 0.10 \cdot Q[m^3/s] + 3.57 \quad (1)$$

where  $R^2 = 0.34$ . However, no correlations were found for BR or NCFR ( $R^2 < 0.1$ ). Therefore, approximations were made based on the observed scatter in the data (Figure 3). A similar approximation was made for the ungauged point sources within the model. The TSS values derived for each upstream boundary for the typical year, intermediate flow conditions simulated are summarized in Table 2.

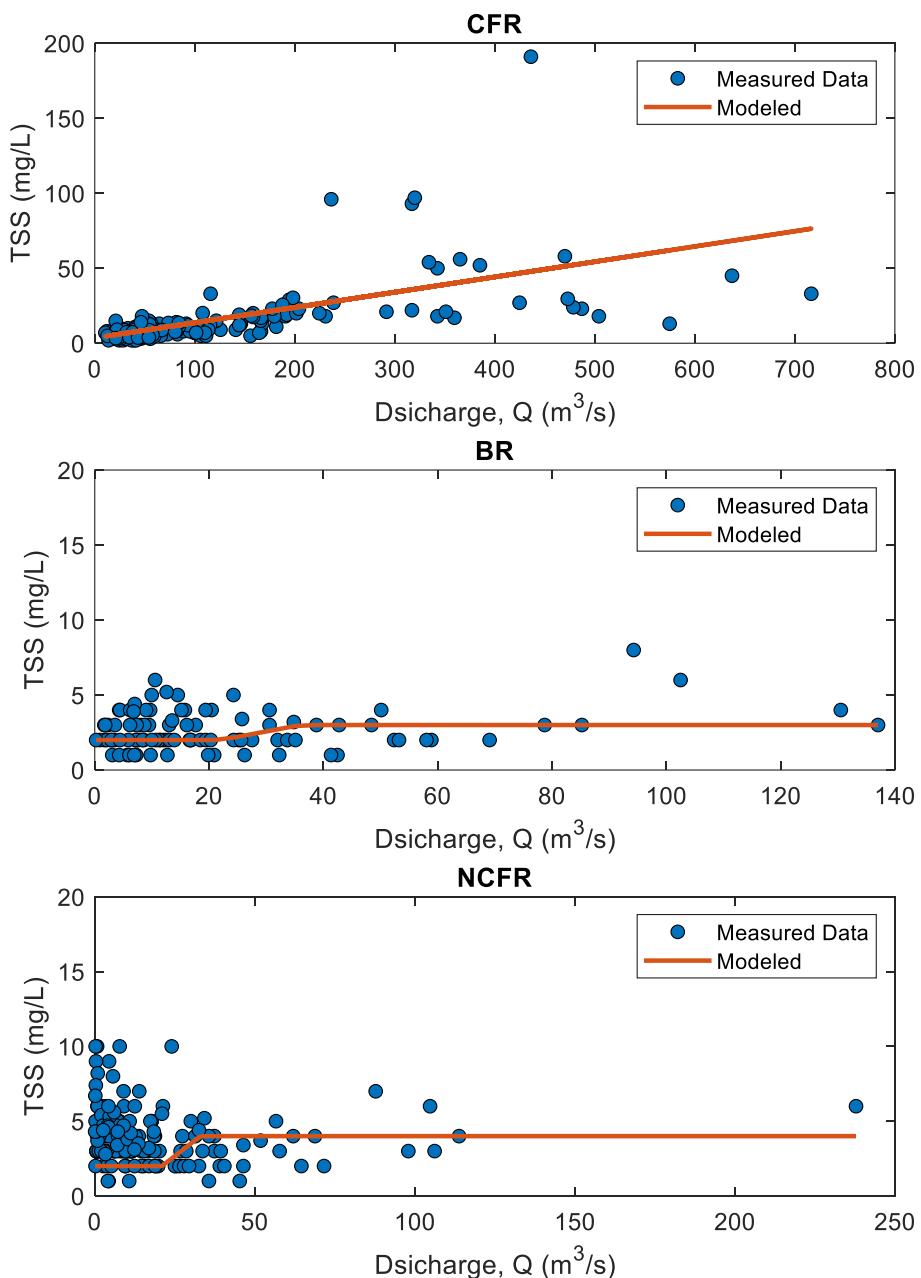



Figure 3. Relationship between total suspended solids (TSS) and discharge.

Table 2. Summary of modeled TSS values in mg/L for each upstream boundary.

| Upstream Boundary | Discharge (m <sup>3</sup> /s) | TSS (mg/L) |
|-------------------|-------------------------------|------------|
| CFR               | 89.85                         | 13         |
| BR                | 13.55                         | 2          |
| NCFR              | 11.05                         | 2          |

### 2.2.3 Morphological Tide Schematization

In order to practically and efficiently simulate 1 year of sediment transport, a morphological acceleration factor (morfac) was applied. This is a common approach to simulating long-term sediment transport and well supported literature (REF). The ‘morfac’ parameter enables the model to simulate sediment transport and morphological changes over a one-year period by scaling up (or accelerating) the results of the model for a much shorter representative timeframe.

For the cohesive sediment simulations, where the temporal variation in sediment transport is governed by the tide, a real time series of astronomical tide over 15 days was scaled to one year using a constant morfac of 24.

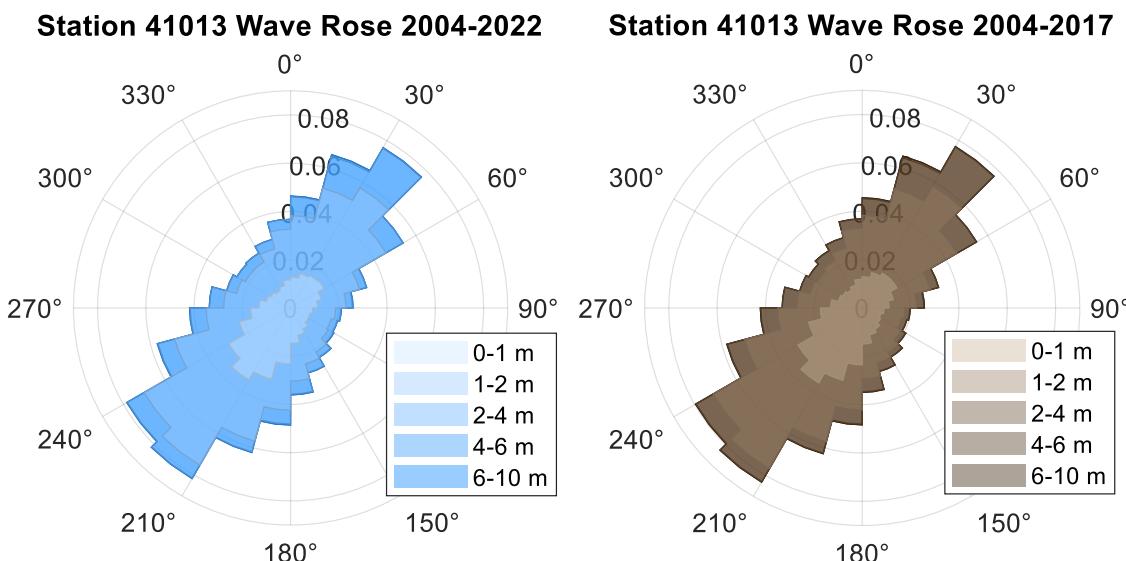
For the noncohesive sediment simulations, where sediment transport varies with both tide and wave climate, it was necessary to define a morphological tide that matched the wave schematization (Section 2.2.4) and captured the average monthly tidal fluctuations throughout the year. Following the approach developed by Lesser (2009), a representative tidal fluctuation was created based on input values of the M2, K1 and O1 constituents. The resulting water level ( $\eta$ ) is then determined by Equation 2.

$$\eta = 1.08 \cdot M2 \cos(\omega_{M2} t + \phi_{M2}) + C1 \cos(\omega_{C1} t + \phi_{C1}), \quad (2)$$

where the diurnal astronomical tidal constituent,  $C1 = \sqrt{2 \cdot O1 \cdot K1}$  and  $\phi_{C1} = 0.5(\phi_{K1} + \phi_{O1})$ ,  $\omega$  is the angular frequency of the tidal constituents,  $\phi$  is the phase offset of the tidal constituents. The tidal periods of the M2 and C1 constituents were set to 750 minutes (semi-diurnal) and 1500 minutes (diurnal), respectively. The constant value of 1.08 is a correction factor to account for the disproportionate spring-neap contradictions to sediment transport (NCSA Section 203 2020).

### 2.2.4 Morphological Wave Schematization

To capture the impact of waves on long-term inlet morphology, it was essential to define a limited yet representative set of wave conditions to optimize the model computationally. These wave classes, combined with appropriate ‘morfac’ values, accurately represent the wave climate throughout the year. In this approach, each wave class is simulated for a few morphological tidal cycles and multiplied by a different morfac value to represent its frequency of occurrence in a full year.


Wave climate schematization methods include the Fixed Bins Method, Energy Flux Method, Energy Flux with Extreme Wave Conditions Method, CERC Method, and the Optimum Selection or Routine Method (Opti-method). The Opti-method considers transport patterns from previous model simulations and has been reported to perform better than the other methods, especially when using a limited number of wave cases (around six) to represent an annual wave climate (Benedet, et al. 2016).

Leveraging the results of the Opti-method carried out during the NCSPA Section 203 (2020) study, Table 3 shows the representative wave classes and corresponding morfac values used as model input. These wave classes were derived from measurements at NOAA NDBC Buoy station 41013. The mean wind speed in each wave class was used as the representative wind condition, with wind directions assumed to align with the peak wave direction.

*Table 3. Representative wave classes and corresponding wind speeds and morfac values used as model input.*

| No. Wave Class | Significant Wave Height (m/s) | Peak Wave Period (s) | Peak Wave Direction (°N) | Wind Speed (m/s) | Wind Direction (°N) | Morfac |
|----------------|-------------------------------|----------------------|--------------------------|------------------|---------------------|--------|
| 1              | 2.4                           | 8.2                  | 157.7                    | 9.8              | 157.7               | 12.4   |
| 2              | 2.4                           | 8.0                  | 172.6                    | 10.4             | 172.6               | 0.5    |
| 3              | 3.4                           | 9.0                  | 173.1                    | 13.2             | 173.1               | 8.2    |
| 4              | 2.4                           | 7.6                  | 201.7                    | 11.9             | 201.7               | 5.2    |
| 5              | 1.4                           | 5.8                  | 217.1                    | 9.0              | 217.1               | 19.7   |
| 6              | 2.4                           | 7.0                  | 231.1                    | 13.4             | 231.1               | 7.4    |

To confirm the validity of the NCSPA Section 203 (2020) study results, a comparison was made between the wave climate at the time of the study and the present-day (year 2022) using measurements from NOAA NDBC Buoy station 41013. The analysis of wave roses (Figure 4) and histograms (Figure 5) showed negligible changes in wave climate, indicating that the representative wave classes defined during the NCSPA Section 203 (2020) study remain valid.



*Figure 4. Wave roses derived from measurements at NOAA NDBC Buoy station 41013 for periods 2004 - 2022 and 2004 - 2017 (NCSPA Section 203 (2020) study period).*

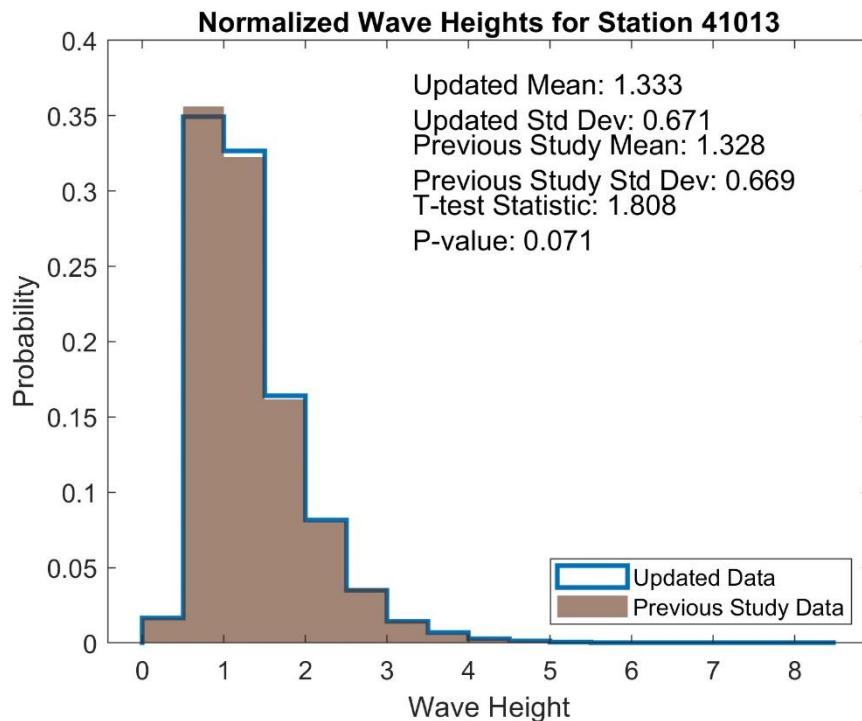



Figure 5. Histograms of significant wave heights measured at NOAA NDBC Buoy station 41013 for periods 2004 - 2022 and 2004 - 2017 (NCSPA Section 203 (2020) study period).

## 2.3 Model Parameter Settings

### 2.3.1 Cohesive Sediment Transport

The primary sediment transport parameters for the cohesive model include specific density, settling velocity, critical bed shear stress for sedimentation and erosion, dry bed density and initial layer thickness. Table 4 summarizes the model parameter settings that were applied. These settings, most of which were recommended in the NCSPA Section 203 (2020) study, were retained here following a comprehensive review and comparison of model results with measured data (Section 4).

Table 4. Summary of the model parameter settings applied to simulate cohesive sediment transport.

| Parameter | Description                                 | Value                           |
|-----------|---------------------------------------------|---------------------------------|
| SedTyp    | Sediment Type                               | mud                             |
| RhoSol    | Specific Density                            | 2,650 (kg/m <sup>3</sup> )      |
| WS0/WSM   | Settling Velocity                           | 0.0005 (m/s)                    |
| TcrSed    | Critical bed shear stress for sedimentation | 0.9 (N/m <sup>2</sup> )         |
| TcrEro    | Critical bed shear stress for erosion       | 0.50 (N/m <sup>2</sup> )        |
| EroPar    | Erosion parameter                           | 0.000005 (kg/m <sup>2</sup> /s) |
| CDryB     | Dry bed density                             | 500 (kg/m <sup>3</sup> )        |
| MorFac    | Morphological scale factor                  | 24                              |

Appendix R of the NCSPA Section 203 (2020) study revealed that the sediment in the channel upstream of Reeves Point consists of fines (silt and clay, together referred to as mud), whereas the

lower reaches are mainly sand. Accordingly, the initial cohesive sediment thickness in the model was set to 5 meters upstream and 0 meters downstream of Reeves Point.

### 2.3.2 Noncohesive Sediment Transport

The default non-cohesive sediment transport formulation by Van Rijn (1993) was applied. This formulation incorporates the effects of waves by considering both wave-related and current-related transport components. It includes wave-related terms, such as: the bed shear stress due to current in the presence of waves, total wave-related friction factor based on the wave related roughness, near-bed peak orbital velocity based on the significant wave height and an estimation of suspended sediment transport due to wave asymmetry effects. For further details on the formulation and its implementation, please refer to the Delft3D model documentation (Deltares 2018).

*Table 5. Summary of the model parameter settings applied to simulate noncohesive sediment transport.*

| Parameter | Description                                                                                | Value                       |
|-----------|--------------------------------------------------------------------------------------------|-----------------------------|
| IopKCW    | Flag for determining Rc and Rw                                                             | 1                           |
| RDC       | Current related roughness height (only used if IopKCW <> 1)                                | 0.01 (m)                    |
| RDW       | Wave related roughness height (only used if IopKCW <> 1)                                   | 0.02 (m)                    |
| MorFac    | Morphological scale factor                                                                 | Variable<br>(Section 2.2.4) |
| MorStt    | Spin-up interval from TStart until start of morphological changes                          | 0.0 (min)                   |
| Thresh    | Threshold sediment thickness for transport and erosion reduction                           | 0.05 (m)                    |
| MorUpd    | Update bathymetry during FLOW simulation                                                   | TRUE                        |
| EqmBc     | Equilibrium sand concentration profile at inflow boundaries                                | TRUE                        |
| DensIn    | Include effect of sediment concentration on fluid density                                  | FALSE                       |
| AksFac    | Van Rijn's reference height = AKSFAC * KS                                                  | 1.0                         |
| RWave     | Wave related roughness = RWAVE * estimated ripple height.<br>Van Rijn Recommends range 1-3 | 2.0                         |
| AlfaBs    | Streamwise bed gradient factor for bed load transport                                      | 1.0                         |
| AlfaBn    | Transverse bed gradient factor for bed load transport                                      | 15.0                        |
| WetSlope  | Avalanching slope sV:1H                                                                    | 0.2                         |
| AvalTime  | Avalanching time in 1 day                                                                  | 86400.0 (s)                 |
| Sus       | Multiplication factor for suspended sediment reference concentration                       | 1.0                         |
| Bed       | Multiplication factor for bed-load transport vector magnitude                              | 1.0                         |
| SusW      | Wave-related suspended sed. transport factor                                               | 0.0                         |
| BedW      | Wave-related bed-load sed. transport factor                                                | 0.0                         |
| SedThr    | Minimum water depth for sediment computations                                              | 0.1 (m)                     |
| ThetSD    | Factor for erosion of adjacent dry cells                                                   | 0.5                         |
| HMaxTH    | Max depth for variable ThetSD                                                              | 1.5 (m)                     |

Based on information on the native beach sediment composition and recommendations noted in the NCSPA Section 203 (2020) study, the median sediment diameter was set to 0.2 mm. The initial sediment layer thickness was set to 10 m in the littoral zone and 0.5 m in the upper reaches, where the volume of noncohesive sediment is expected to be significantly lower. To evaluate the effects of

sediment size and initial layer thickness on modeled shoaling rates, a sensitivity analysis was conducted (Section 4.4).

### 3 Shoaling Rate Estimation

Delft3D provides the cumulative sedimentation and erosion (in meters) for each grid cell at the end of the simulation. This indicates the vertical change in bed elevation, either an increase (sedimentation) or decrease (erosion), over one year (m/yr). To determine the shoaling rate ( $m^3/yr$  or  $cy/y$ ), the cumulative sedimentation was multiplied by the area of each grid cell ( $m^2$ ). The shoaling rate for each reach of the navigation channel was then calculated by summing the total volume of sedimentation within each polygon-defined area. Since the area considered can significantly affect the shoaling rates, with larger areas yielding greater total sedimentation volumes, the USACE navigation channel setbacks were used to define the extent of potential dredging areas (Figure 6).

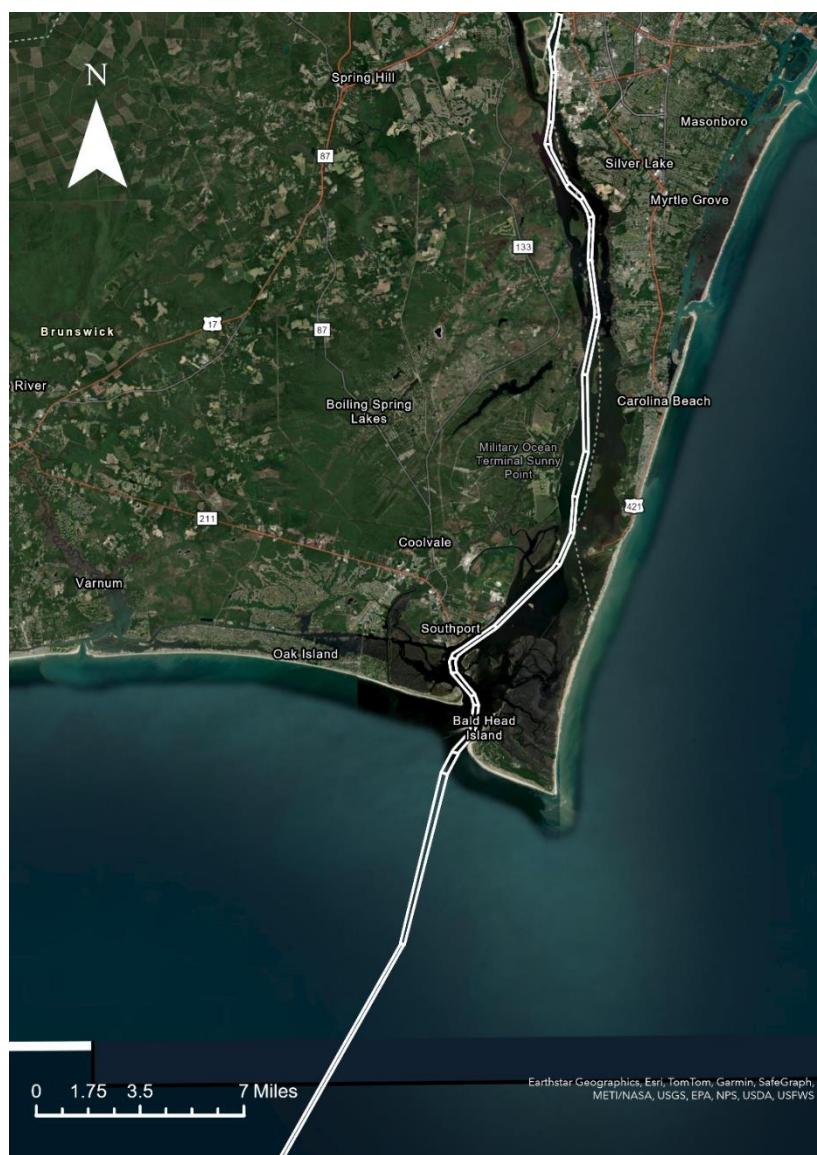



Figure 6. USACE ([USACE, 2019](#)) setback polygons (white) used to estimate shoaling rates.

## 4 Model Validation

### 4.1 Vertical Suspended Sediment Profiles

The large domain cohesive sediment model was validated by qualitatively comparing the modeled vertical variations in total sediment concentrations to measurements made during the period from March 27 to April 1, 2017. TSS casts were available at TR03, TR06, TR09, and TR11 (Figure 7 and Figure 8). Measured discharge rates from the USGS gauges were used at the upstream boundaries, and TSS values were set based on historical data. TSS values at the offshore boundary were set to zero due to the predominance of sand in those areas.



Figure 7. Transects TR01 to TR06 along Cape Fear River.




Figure 8. Transects TR07 to TR13 along Cape Fear River.

The modeled results showed reasonable agreement at each transect (Figure 9 to Figure 14). Due to the significant scatter and high variation in TSS measurements at similar depths, a third-order polynomial fit was applied to the data to represent the measurements. Given the high variability in the observations, no quantitative error statistics were used to assess model performance. The model setup was further validated quantitatively by comparing the estimated shoaling rates to historic records in Section 4.2.

Reference: Task 11 Channel Morphology Study

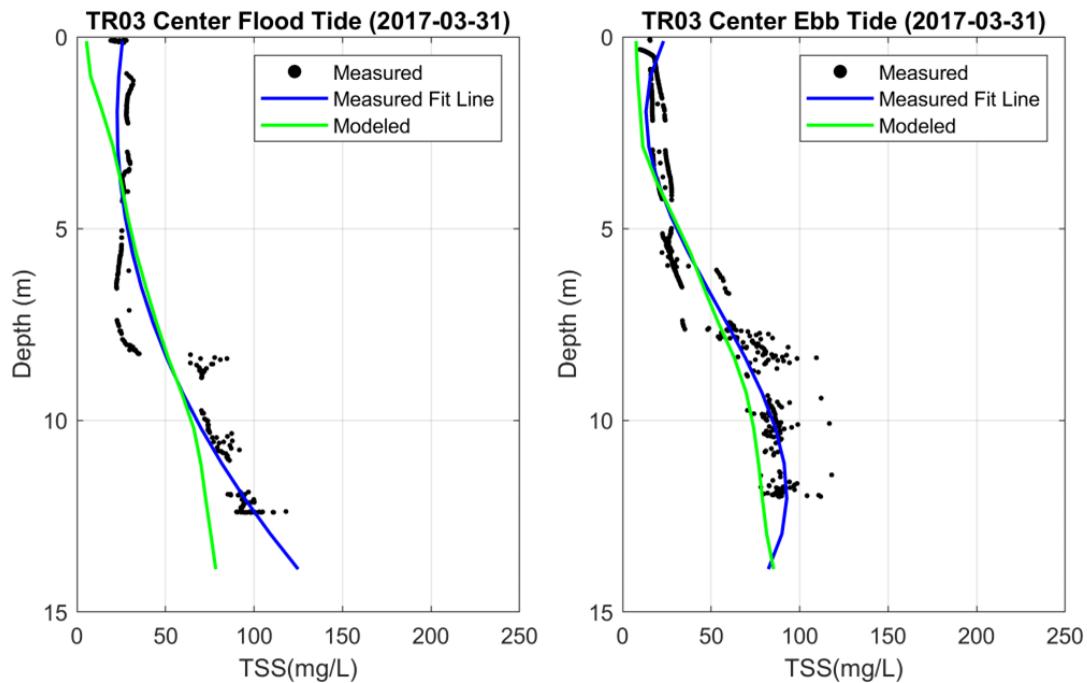



Figure 9 Modeled vs. measured TSS at the center of Transect TR03 during flood (left) and ebb (right) tides.

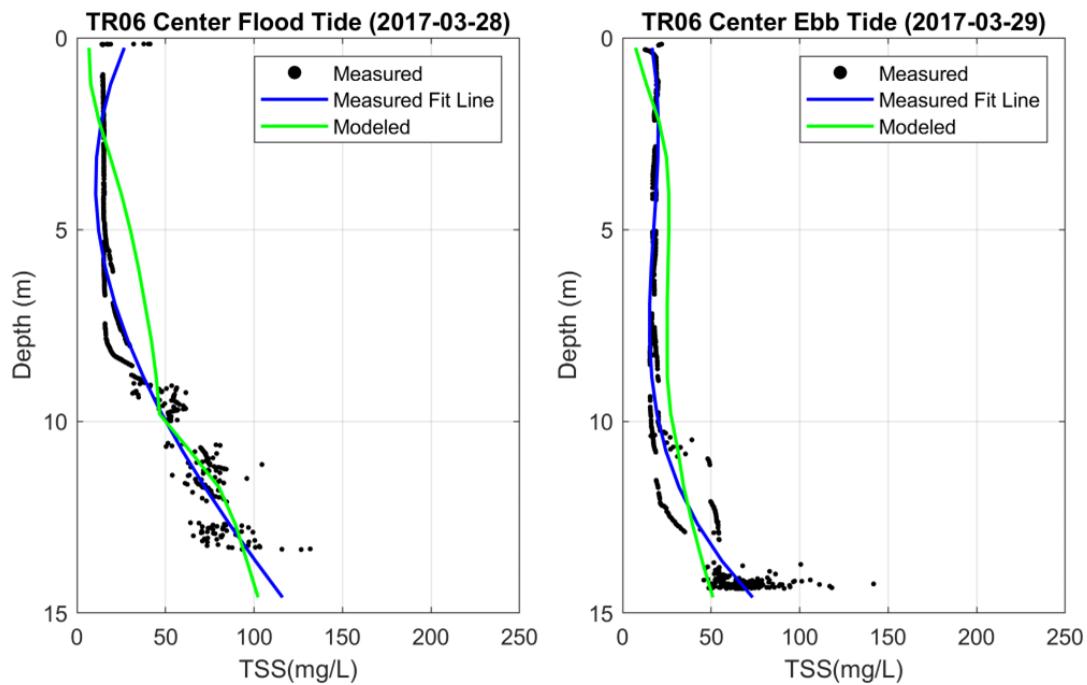



Figure 10 Modeled vs. measured TSS at the center of Transect TR06 during flood (left) and ebb (right) tides.

Reference: Task 11 Channel Morphology Study

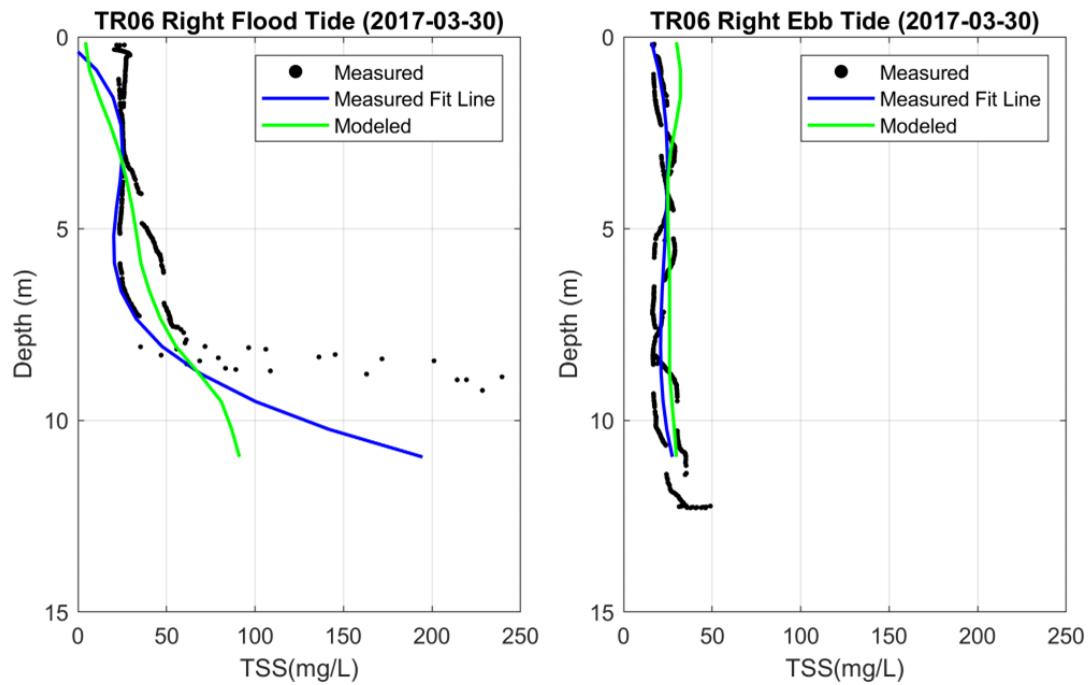



Figure 11 Modeled vs. measured TSS at the right side of Transect TR06 during flood (left) and ebb (right) tides.

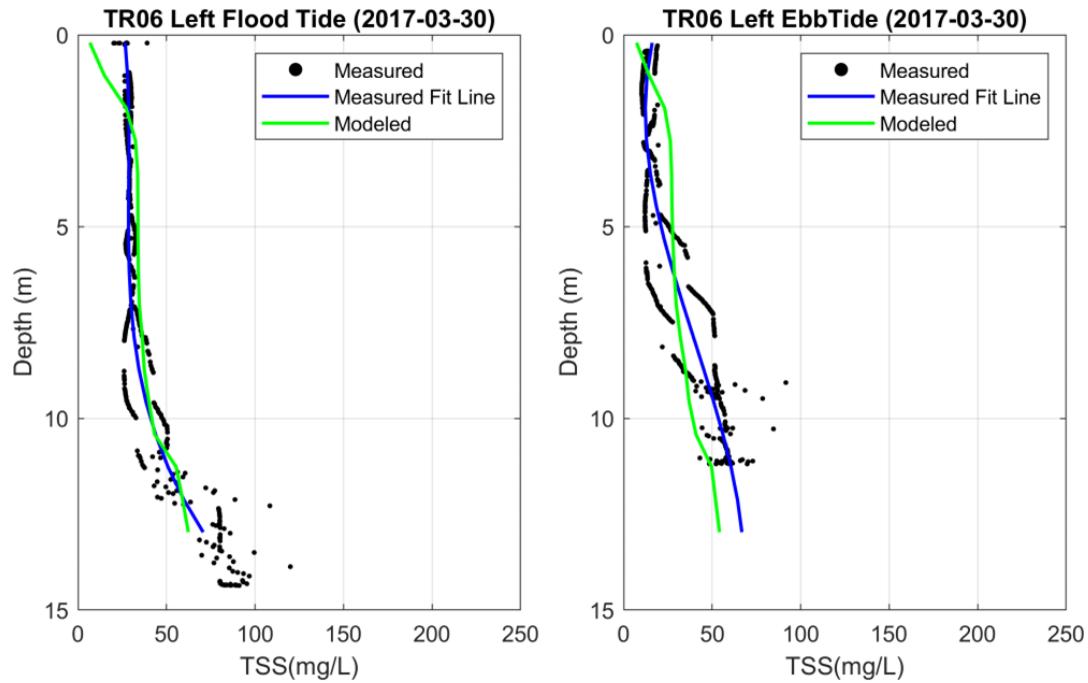



Figure 12 Modeled vs. measured TSS at the left side of Transect TR06 during flood (left) and ebb (right) tides.

Reference: Task 11 Channel Morphology Study

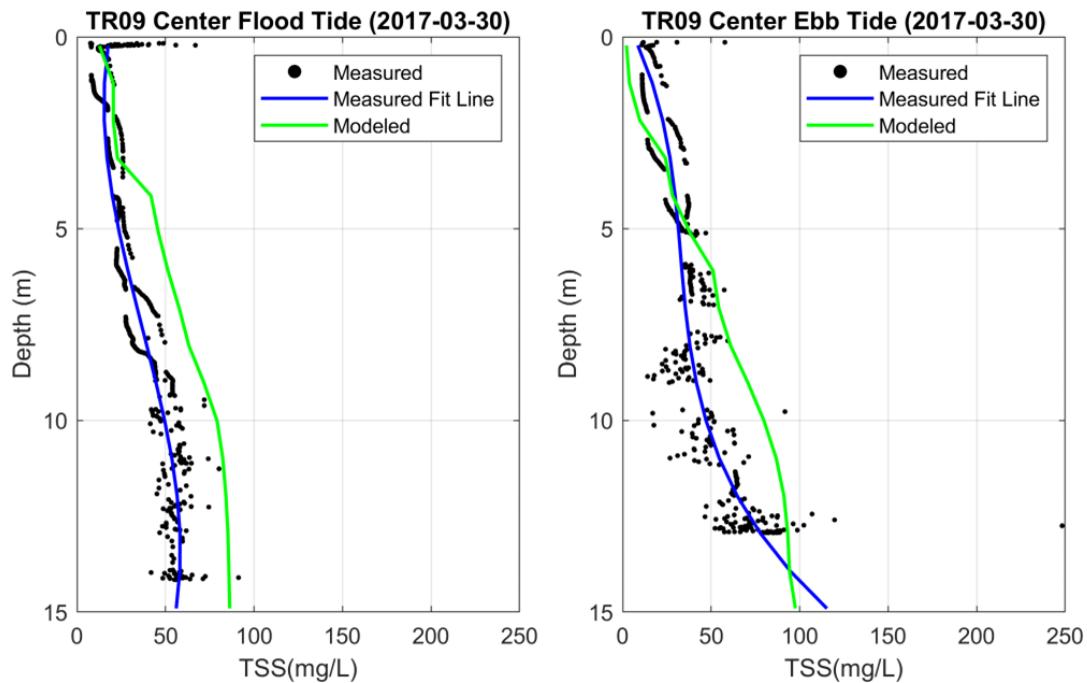
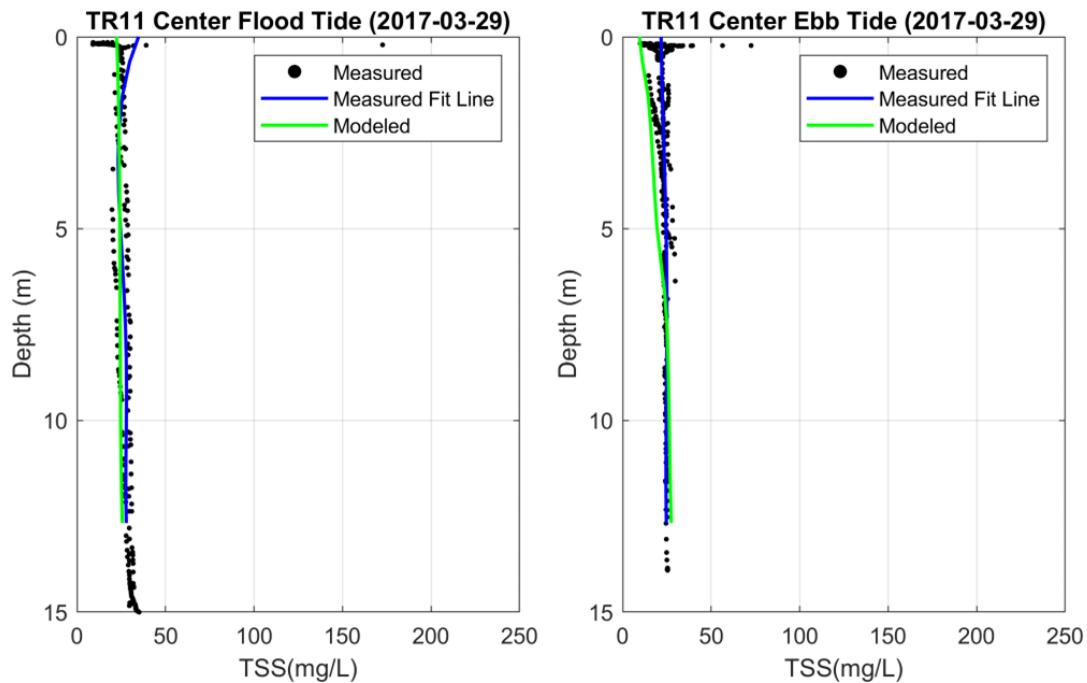
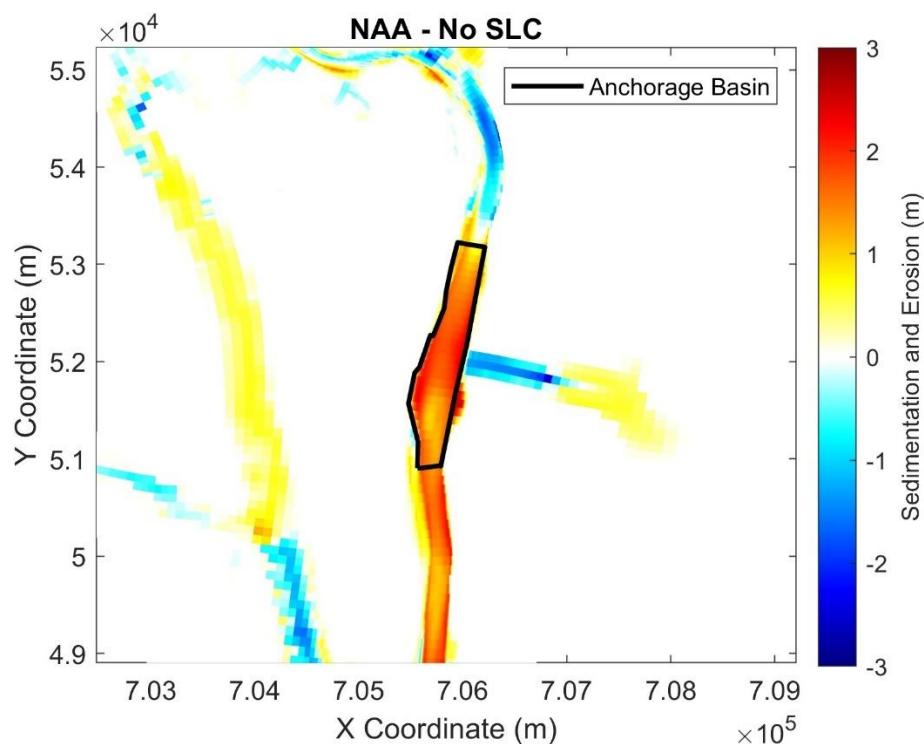



Figure 13 Modeled vs. measured TSS at the center of Transect TR09 during flood (left) and ebb (right) tides

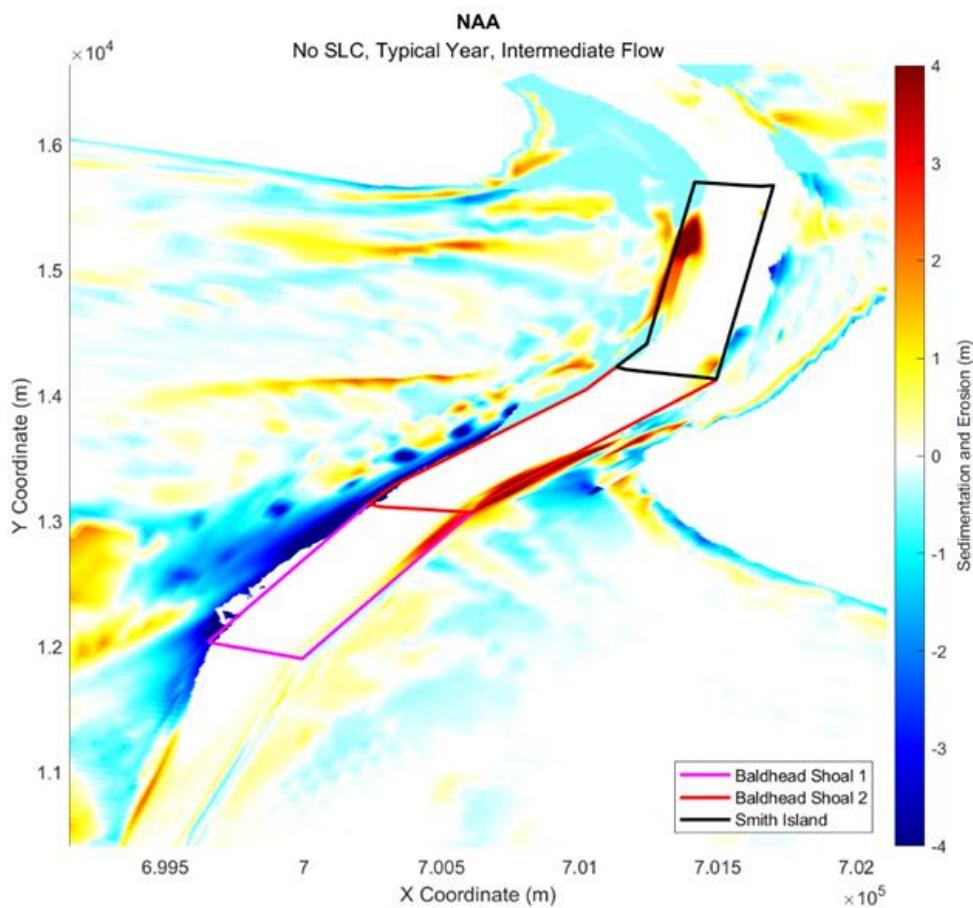




Figure 14 Modeled vs. measured TSS at the center of Transect TR11 during flood (left) and ebb (right) tides.

## 4.2 Shoaling at Anchorage Basin

The cohesive model was further validated by comparing the estimated shoaling rate at Anchorage Basin for the NAA No SLC scenario to historic dredging rates and the shoaling rate computed in the 2014 Feasibility and Environmental Assessment Report (USACE 2014). The modeled shoaling rate was found to be within the upper range of historic dredging volumes and within 24% of the reported shoaling rates (Table 6). Since the setback polygon used to assess shoaling rates extend beyond the navigation channel (Figure 15), the modeled shoaling rate is expected to represent an upper limit.

*Table 6. Comparison of modeled shoaling rate at Anchorage Basin with reported dredge volumes from 2010 to 2023 and the computed shoaling rate from the 2014 Feasibility and Environmental Assessment Report (USACE 2014).*


| Dredging Reports (2010 to 2023) |                                            |                                 | 2014 Feasibility and Environmental Assessment Report (USACE 2014) | Modeled   |
|---------------------------------|--------------------------------------------|---------------------------------|-------------------------------------------------------------------|-----------|
| Minimum Volume Dredged per year | Average (total volume divided by 13 years) | Maximum Volume Dredged per year |                                                                   |           |
| 206,705                         | 1,013,430                                  | 1,631,474                       | 1,251,804                                                         | 1,549,100 |



*Figure 15. Modeled annual sedimentation and erosion at Anchorage Basin for NAA No SLC. Polygon represents the setback area used to estimate the shoaling rate.*

## 4.3 Shoaling at Channel Inlet

Shoaling rates were calculated near the channel inlet for the Smith Island, Baldhead Shoal Reach 1, and Baldhead Shoal Reach 2 reaches for comparison with historical data (Figure 16). To investigate the shoaling that would occur in the navigation channel, the 1 yr cumulative sedimentation was calculated from the USACE channel setback polygons for each reach. The setbacks are indicated by the colored polygons in Figure 16.



*Figure 16. Modeled annual sedimentation and erosion for the Smith Island, Baldhead Shoal Reach 1 and Baldhead Shoal Reach 2 reaches of the navigation channel. Polygons show the setbacks used to estimate shoaling rates.*

The total modeled shoaling volume for the three reaches of 515,660 cy for the grain size of 0.20mm was found to be within the range of historical shoaling rates (Tables 7 and 8). The modeled shoaling total is within ~12% of the weighted average shoaling reported in Table 7 and ~15% of the average of the shoaling quantities reported in Table 8. Table 7 demonstrates the variability in historical interannual shoaling rates for the combined reaches (~27%), particularly for the Smith Island Reach (~51%).

*Table 7. Shoaling Rates for the Wilmington Harbor Inner Ocean Bar Channels from surveys (USACE, 2011)*

| Channel                | 1 <sup>st</sup> Cycle |      |              | 2 <sup>nd</sup> Cycle |      |              | 3 <sup>rd</sup> Cycle |      |              | Weighted Average |       |              |
|------------------------|-----------------------|------|--------------|-----------------------|------|--------------|-----------------------|------|--------------|------------------|-------|--------------|
|                        | Rate (cy/d)           | Days | Rate (cy/yr) | Rate (cy/d)           | Days | Rate (cy/yr) | Rate (cy/d)           | Days | Rate (cy/yr) | Rate (cy/d)      | Days  | Rate (cy/yr) |
| Baldhead Shoal Reach 1 | 443                   | 772  | 161,513      | 589                   | 608  | 215,095      | 506                   | 216  | 184,617      | 507              | 1,596 | 185,055      |
| Baldhead Shoal Reach 2 | 517                   | 773  | 188,705      | 712                   | 512  | 259,953      | 322                   | 152  | 117,421      | 566              | 1,437 | 206,554      |
| Smith Island           | 431                   | 811  | 157,315      | 591                   | 611  | 215,788      | 878                   | 153  | 320,543      | 537              | 1,575 | 195,859      |
| Total                  |                       |      | 507,533      |                       |      | 690,836      |                       |      | 622,581      |                  |       | 587,468      |

*Table 8. Shoaling volume rate calibration results (cy/yr)*

| Phase 1                                    |  | Shoaling Rate (cy/yr) |                  |                  |         |
|--------------------------------------------|--|-----------------------|------------------|------------------|---------|
| Non cohesive model (sand) sensitivity runs |  | Smith Island          | Baldhead Shoal 1 | Baldhead Shoal 2 | Total   |
| Model Results                              |  | 289,030               | 115,880          | 110,750          | 515,660 |
| USACE (2011)                               |  | 196,000               | 184,690          | 206,590          | 587,280 |
| Condition survey (11/2015 – 11/2016)       |  | 161,180               | 106,090          | 324,600          | 591,870 |
| Condition survey (11/2016 – 12/2017)       |  | 109,830               | 287,490          | 237,890          | 635,210 |

## 4.4 Sensitivity Analysis

A set of sensitivity runs were conducted to evaluate the impacts of grain size and initial thickness to the degree of shoaling in the model. The sensitivity runs were designed following a review of the NCSPA Section 203 (2020) study, which indicated that the model results may be sensitive to both grain sizes and initial sediment thicknesses (Figure 17). The following tests were conducted for the NAA No SLC condition:

- 0.175 mm grain size
- 0.200 mm grain size
- 0.250 mm grain size
- 0.200 mm grain size and a 20% increase in initial sediment thickness
- 0.200 mm grain size and a 20% decrease in initial sediment thickness

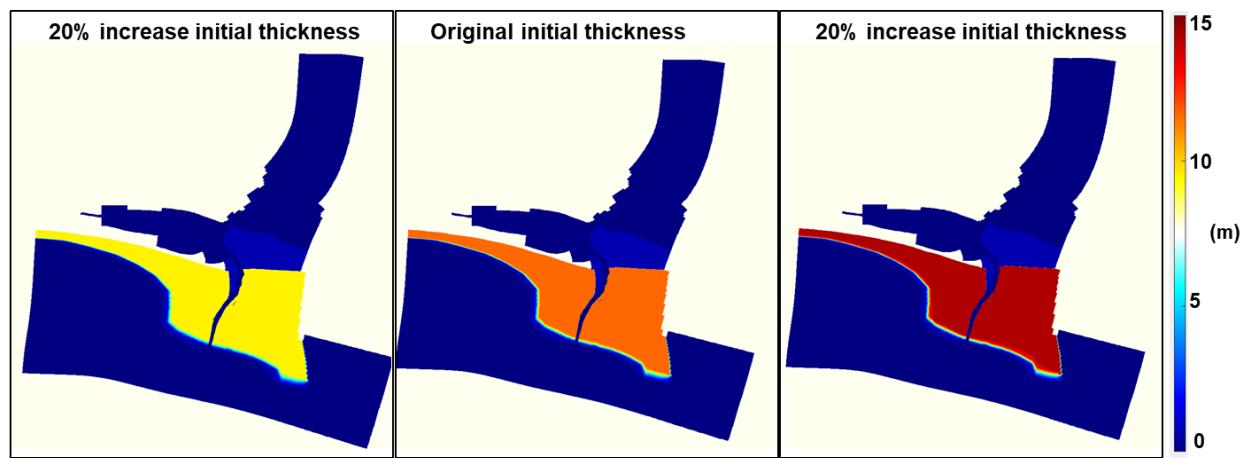



Figure 17. Delft 3D initial sediment layer thicknesses considered for sensitivity testing.

The estimated shoaling rates for each test were compared in the Smith Island, Baldhead Shoal Reach 1, and Baldhead Shoal Reach 2 areas. Table 9 contains the modeled shoaling rates for each model in the sensitivity analysis. Table 10 shows the percent deviation of the model results from the 0.20 mm, original sediment thickness layer test case.

Table 9. Sensitivity Analysis Test Results: Shoaling Rates (cy/yr)

| Phase 1                                        | Shoaling Rate (cy/yr) |                  |                  |         |
|------------------------------------------------|-----------------------|------------------|------------------|---------|
|                                                | Smith Island          | Baldhead Shoal 1 | Baldhead Shoal 2 | Total   |
| Non cohesive model (sand) sensitivity runs     |                       |                  |                  |         |
| NAA No SLC – 0.175 mm                          | 383,170               | 214,150          | 222,070          | 819,390 |
| NAA No SLC – 0.20 mm                           | 289,030               | 115,880          | 110,750          | 515,660 |
| NAA No SLC – 0.25 mm                           | 169,210               | 44,074           | 49,931           | 263,215 |
| NAA No SLC - 0.2 mm increase initial thickness | 311,610               | 115,840          | 111,000          | 538,450 |
| NAA No SLC - 0.2 mm decrease initial thickness | 265,100               | 115,310          | 110,650          | 491,060 |

Table 10. Sensitivity Analysis Test % Difference from 0.20mm, original sediment thickness layer test

| Phase 1                                        | % Difference in Shoaling Rates from NAA SLC1 0.20mm |                  |                  |
|------------------------------------------------|-----------------------------------------------------|------------------|------------------|
|                                                | Smith Island                                        | Baldhead Shoal 1 | Baldhead Shoal 2 |
| Non cohesive model (sand) sensitivity runs     |                                                     |                  |                  |
| NAA No SLC – 0.175 mm                          | 33%                                                 | 85%              | 101%             |
| NAA No SLC – 0.20 mm                           | 0%                                                  | 0%               | 0%               |
| NAA No SLC – 0.25 mm                           | -41%                                                | -62%             | -55%             |
| NAA No SLC - 0.2 mm increase initial thickness | 8%                                                  | 0%               | 0%               |
| NAA No SLC - 0.2 mm decrease initial thickness | -8%                                                 | 0%               | 0%               |

The results of the sensitivity analysis support the findings from the NCSPA Section 203 (2020) study. The following conclusions were determined based on model comparison in the Smith Island, Baldhead Shoal Reach 1, and Baldhead Shoal Reach 2 areas:

1. The grain size of 0.175mm results in increased shoaling rates compared to 0.20 mm.
2. The grain size of 0.25mm results in reduced shoaling rates compared to 020 mm.
3. The grain size of 0.20mm shows agreeable estimates of shoaling rates within the range of observed shoaling rates in these areas and has the potential to demonstrate the effects of the alternatives modeled in Phase II.
4. Shoaling rates extracted from the model are highly sensitive to the delineation of the shoaling area in which they are calculated. The extents of the polygon used to extract sedimentation volumes should be carefully considered when interpreting modeled output.
5. The initial thickness layer variation does not induce significant changes in the model results for the Smith Island Reach and had negligible effects in the Baldhead Shoal Reaches 1 and 2.

Figure 18 illustrates the spatial distribution of sedimentation and erosion for each of the test cases.

### Non-cohesive model (sand) sensitivity runs: NAA No SLC

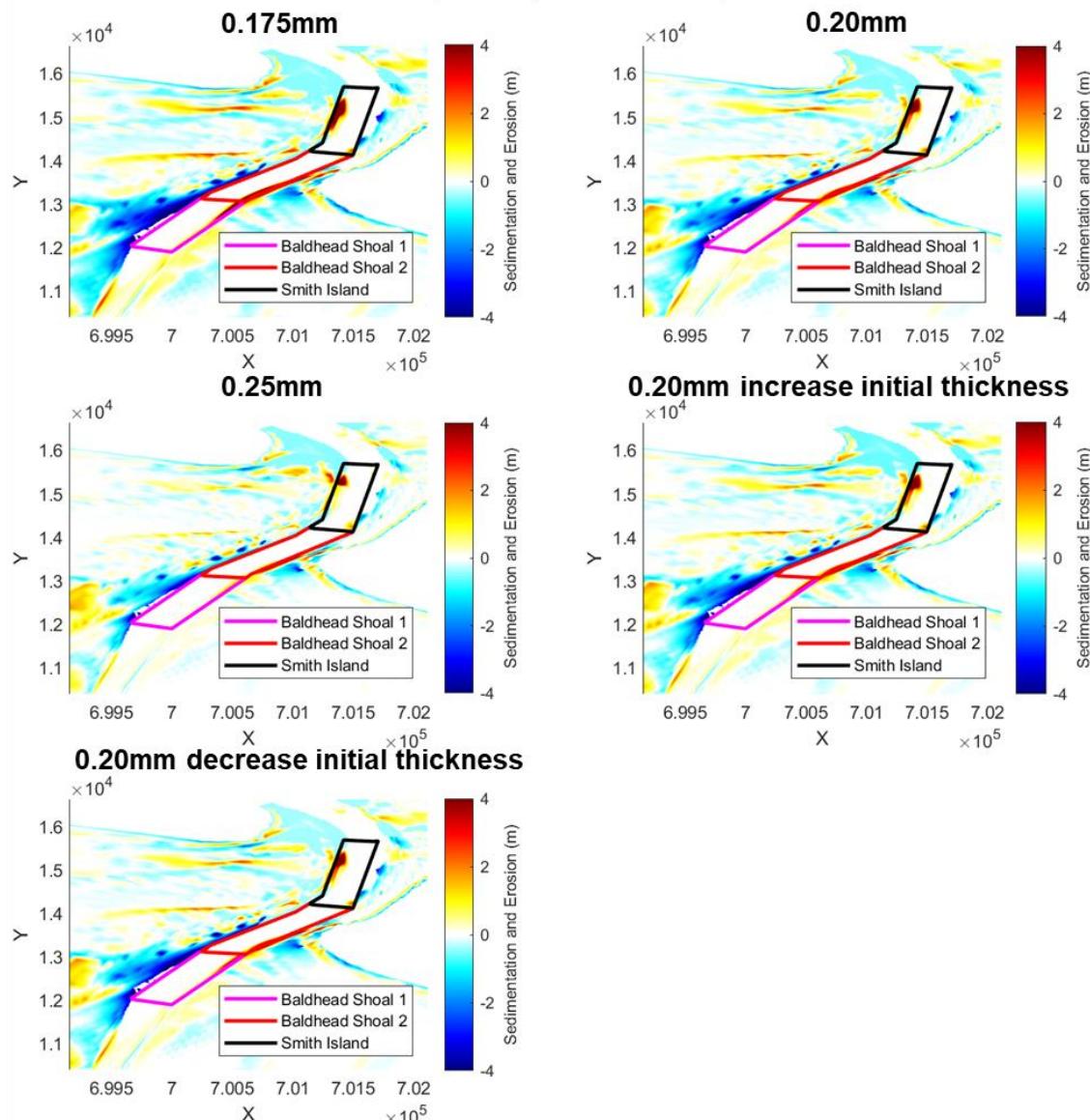



Figure 18. Cumulative 1 year Sedimentation and Erosion patterns for sensitivity analysis test cases

## 5 Model Results

Estimates of with and without project shoaling rates for each reach of the existing and proposed navigation channel for the three channel deepening alternatives (NAA, AA1 and AA2) and four sea level change scenarios (No SLC, SLC1, SLC2, SLC3) are provided in Table 11 to Table 16. Domain wide model output of annual sedimentation and erosion are also provided in the accompanying GIS-ready files.

Note that Reaves Point is considered the transition area between cohesive sediment in the upper estuary and non-cohesive sediment in the lower estuary. Therefore, shoaling rate estimates at Reaves Point were made using both the cohesive and non-cohesive models to represent this transition.

*Table 11 Estimated shoaling rates in cy/yr for NAA – Cohesive Sediment (Upper Reaches)*

| Channel Reach     | No SLC           | SLC1             | SLC2             | SLC3             |
|-------------------|------------------|------------------|------------------|------------------|
| Anchorage Basin   | 1,549,100        | 1,621,000        | 1,742,000        | 1,845,000        |
| Between Channel   | 401,260          | 416,450          | 425,680          | 381,940          |
| Fourth East Jetty | 851,100          | 862,650          | 853,410          | 630,220          |
| Upper Brunswick   | 93,389           | 96,654           | 104,460          | 72,136           |
| Lower Brunswick   | 53,872           | 51,928           | 46,654           | 13,718           |
| Upper Big Island  | 56,851           | 52,662           | 45,829           | 9,687            |
| Lower Big Island  | 34,411           | 32,671           | 25,785           | 2,154            |
| Keg Island        | 5,780            | 5,558            | 4,472            | -                |
| Upper Lilliput    | 952              | 844              | 821              | 459              |
| Lower Lilliput    | 125,610          | 128,120          | 119,050          | 35,330           |
| Upper Midnight    | 71,727           | 72,473           | 66,736           | 30,119           |
| Lower Midnight    | 4,900            | 4,824            | 4,821            | 3,933            |
| Reaves Point      | 312              | 303              | 281              | 175              |
| <b>Total</b>      | <b>3,249,264</b> | <b>3,346,137</b> | <b>3,439,999</b> | <b>3,024,871</b> |

*Table 12. Estimated shoaling rates in cy/yr for AA1 – Cohesive Sediment (Upper Reaches)*

| Channel           | No SLC           | SLC1             | SLC2             | SLC3             |
|-------------------|------------------|------------------|------------------|------------------|
| Anchorage Basin   | 1,559,600        | 1,643,700        | 1,780,600        | 1,873,800        |
| Between Channel   | 420,090          | 437,470          | 452,130          | 415,540          |
| Fourth East Jetty | 990,930          | 999,240          | 977,630          | 714,130          |
| Upper Brunswick   | 145,600          | 149,240          | 152,280          | 100,500          |
| Lower Brunswick   | 97,135           | 89,044           | 73,179           | 24,546           |
| Upper Big Island  | 98,841           | 89,055           | 76,113           | 19,120           |
| Lower Big Island  | 62,578           | 59,460           | 51,424           | 9,644            |
| Keg Island        | 20,541           | 17,362           | 13,296           | 872              |
| Upper Lilliput    | 5,312            | 4,734            | 4,457            | 1,673            |
| Lower Lilliput    | 129,860          | 133,440          | 122,370          | 34,794           |
| Upper Midnight    | 63,296           | 64,198           | 59,439           | 24,662           |
| Lower Midnight    | 2,263            | 2,333            | 2,373            | 4,118            |
| Reaves Point      | 1,078            | 943              | 860              | 330              |
| <b>Total</b>      | <b>3,597,123</b> | <b>3,690,219</b> | <b>3,766,151</b> | <b>3,223,730</b> |

Table 13. Estimated shoaling rates in cy/yr for AA2 – Cohesive Sediment (Upper Reaches)

| Channel           | No SLC           | SLC1             | SLC2             | SLC3             |
|-------------------|------------------|------------------|------------------|------------------|
| Anchorage Basin   | 1,544,700        | 1,629,200        | 1,764,000        | 1,876,900        |
| Between Channel   | 414,920          | 432,350          | 444,530          | 405,550          |
| Fourth East Jetty | 951,880          | 965,030          | 942,830          | 687,240          |
| Upper Brunswick   | 133,750          | 138,350          | 142,070          | 95,155           |
| Lower Brunswick   | 84,025           | 77,806           | 64,815           | 23,671           |
| Upper Big Island  | 86,645           | 77,987           | 68,118           | 16,956           |
| Lower Big Island  | 57,671           | 56,194           | 48,500           | 8,104            |
| Keg Island        | 17,768           | 15,740           | 12,264           | 641              |
| Upper Lilliput    | 4,294            | 3,971            | 3,792            | 1,364            |
| Lower Lilliput    | 125,480          | 129,870          | 120,230          | 34,087           |
| Upper Midnight    | 62,566           | 64,071           | 57,777           | 24,615           |
| Lower Midnight    | 2,243            | 2,388            | 2,319            | 3,816            |
| Reaves Point      | 925              | 864              | 723              | 333              |
| <b>Total</b>      | <b>3,486,867</b> | <b>3,593,822</b> | <b>3,671,968</b> | <b>3,178,431</b> |

Table 14. Estimated shoaling rates in cy/yr for NAA – Non-cohesive Sediment (Lower Reaches)

| Channel           | No SLC         | SLC1           | SLC2           | SLC3           |
|-------------------|----------------|----------------|----------------|----------------|
| Reaves Point      | 645            | 847            | 1,071          | 94             |
| Horseshoe Shoal   | 209            | 267            | 238            | 30             |
| Snows Marsh       | 4,227          | 5,395          | 5,887          | 484            |
| Lower Swash       | 1,273          | 1,255          | 1,097          | 269            |
| Battery Island    | 8,326          | 8,151          | 10,876         | 26,112         |
| Southport Channel | 9,264          | 8,422          | 7,440          | 7800           |
| Baldhead Caswell  | 1,663          | 1,444          | 1,251          | 333            |
| Smith Island      | 289,031        | 319,816        | 354,365        | 203,287        |
| BH Shoal Reach1   | 115,876        | 114,789        | 123,026        | 65,407         |
| BH Shoal Reach2   | 110,745        | 114,179        | 117,024        | 115,867        |
| <b>Total</b>      | <b>541,260</b> | <b>574,565</b> | <b>622,274</b> | <b>419,684</b> |

Table 15. Estimated shoaling rates in cy/yr for AA1 – Non-cohesive Sediment (Lower Reaches)

| Channel           | No SLC         | SLC1           | SLC2           | SLC3           |
|-------------------|----------------|----------------|----------------|----------------|
| Reaves Point      | 1,282          | 1,551          | 1942           | 262            |
| Horseshoe Shoal   | 326            | 403            | 432            | 54             |
| Snows Marsh       | 4,319          | 5,235          | 5,914          | 1,055          |
| Lower Swash       | 397            | 499            | 625            | 309            |
| Battery Island    | 9,218          | 10,889         | 13,304         | 14,419         |
| Southport Channel | 3,155          | 3,719          | 3,933          | 7,322          |
| Baldhead Caswell  | 84             | 97             | 123            | 134            |
| Smith Island      | 276,810        | 309,925        | 350,047        | 193,581        |
| BH Shoal Reach1   | 131,506        | 131,413        | 136,866        | 72,510         |
| BH Shoal Reach2   | 117,602        | 121,285        | 125,253        | 124,339        |
| <b>Total</b>      | <b>544,700</b> | <b>585,017</b> | <b>638,440</b> | <b>413,986</b> |

Table 16. Estimated shoaling rates in cy/yr for AA2 – Non-cohesive Sediment (Lower Reaches)

| Channel           | No SLC         | SLC1           | SLC2           | SLC3           |
|-------------------|----------------|----------------|----------------|----------------|
| Reaves Point      | 1,190          | 1,449          | 1,823          | 242            |
| Horseshoe Shoal   | 293            | 369            | 398            | 49             |
| Snows Marsh       | 4,244          | 5,153          | 5,847          | 1,041          |
| Lower Swash       | 373            | 471            | 592            | 295            |
| Battery Island    | 8,378          | 9,977          | 12,373         | 13,777         |
| Southport Channel | 3,836          | 4,266          | 4,373          | 7,660          |
| Baldhead Caswell  | 106            | 127            | 148            | 160            |
| Smith Island      | 277,500        | 310,699        | 350,567        | 195,781        |
| BH Shoal Reach1   | 129,823        | 126,434        | 135,207        | 70,463         |
| BH Shoal Reach2   | 115,952        | 119,505        | 123,606        | 122,361        |
| <b>Total</b>      | <b>541,696</b> | <b>578,449</b> | <b>634,935</b> | <b>411,829</b> |

## 6 Summary of Findings

The impacts of channel deepening alternatives and SLCs will be discussed in terms of the upper reaches and lower reaches. The upper reaches refer to those reaches investigated by the cohesive model (Anchorage Basin to Reaves Point), and the lower reaches refer to those reaches investigated by the noncohesive model (Reaves Point to Baldhead Shoal Reach 2). It is important to note that the shoaling quantities provided are calculated strictly within the setback polygons.

### 6.1 Impacts of Channel Deepening Alternatives

The channel deepening alternatives produced consistent impacts spatially along the navigation channel. In the upper reaches, AA1 resulted in the highest shoaling rates for all SLCs, exceeding the NAA by ~6-10% and AA2 by ~1-3%. In the lower reaches, AA1 produced the highest shoaling rates for all SLCs by a margin of ~1-3% compared to the NAA and ~1% compared to AA2. In the upper reaches, AA1 and AA2 showed consistent increases in shoaling compared to the NAA in all reaches except for the Upper Midnight and Lower Midnight reaches, which showed decreased sedimentation. In the lower reaches, AA1 and AA2 produced increased shoaling between Reaves Point and Snows Marsh as well as Baldhead Shoal Reaches 1 and 2, but decreased shoaling in the reaches in between.

### 6.2 Impacts of SLC

SLC significantly impacts channel shoaling rates by altering the hydrodynamic conditions within the estuary leading to increased sedimentation in some areas due to changes in tidal flow and wave action, while also causing increased erosion in others. Changes in tidal prism, amplitude and asymmetry due to SLC can lead to shifts in sedimentation patterns, potentially causing more sediment to be deposited in certain areas while eroding others (Jiang, et al. 2020). Furthermore, SLC allows larger waves to propagate farther inland, increasing the erosive force. As a result, the impacts of SLC on the navigation channel were found to be nonlinear and spatially varying in both the upper and lower reaches.

For example, the shoaling rate at Anchorage consistently increased with increasing SLC. On the other hand, the shoaling rates for Smith Island and Baldhead Shoal Reach 1 increased for SLC1 and SLC2 but decreased notably for SLC3. Overall, SLC2 ultimately produced the highest total shoaling rates across the entire navigation channel (upper and lower reaches), followed SLC1 and then No SLC.

## 7 References

Benedet, L., J. P. F. Dobrochinski, D. J. R. Walstra, A. H. F. Klein, and R. Ranasinghe. 2016. "A morphological modeling study to compare different methods of wave climate schematization and evaluate strategies to reduce erosion losses from a beach nourishment project." *Coastal Engineering* 69-86. doi:<https://doi.org/10.1016/j.coastaleng.2016.02.005>.

Deltas. 2018. *Delft3D-FLOW: Simulation of multi-dimensional hydrodynamic flows*. User Manual, Deltas.

Jiang, Long, Theo Gerkema, Deborah Idier, Aimee B. A. Slangen, and Karline Soetaer. 2020. "Effects of sea-level rise on tides and sediment dynamics in a Dutch tidal bay." *Ocena Science* 307-321.

Lesser, G. R. 2009. "An approach to medium-term coastal morphological modelling."

Lesser, G. R., J. A. Roelvink, J. A. T. M. Van Kester, and G. S. Stelling. 2004. "Development and validation of three-dimensional morphological model." *Coastal Engineering* 883-915.

National Water Quality Monitoring Council, United States Geological Survey (USGS), Environmental Protection Agency (EPA). 2021. *Water Quality Portal*. <https://doi.org/10.5066/P9QRKUVJ>.

NCSPA Section 203. 2020. "Wilmington Harbor, North Carolina Navigation Improvement Project: Integrated Section 203 Study & Environmental Report."

USACE. 2014. *Feasibility Report and Environmental Assessment: Wilmington Harbor Navigation Improvements Appendix B - Engineering*. USACE.

USACE. 2021. "Wilmington Harbor and Morehead City Harbor Maintenance Dredging and Bed Leveling: Final Environmental Assessment and Finding of No Significant Impact."

Van Rijn, L. 1993. "Principles of sediment transport in rivers, estuaries and coastal seas." *Environmental Science, Geology*.